Course Introduction

CS315B

Prof. Aiken CS315B Lecture 1

1

Administrivia

- Syllabus on cs315.stanford.edu
 - Assignments will be managed through Canvas
- Instructor: Alex Aiken
 - 9-10:20 TT
- Structure
 - 6 (smallish) programming assignments
 - A course project
 - Some readings (papers and notes)
 - No exams
- Office hours 11-12 Wed and 3-4 Fri
- Ed discussion group
- No lecture recordings

Course Topic

- How do we program modern supercomputers?
- Assumption 1: Current supercomputers are tomorrow's ordinary computers.
- Assumption 2: We need new ways to program contemporary machines.

Course Approach

- Lectures on programming supercomputers
 - Past, present and future
- Focus on task-based parallel programming
 - And specifically on cuNumeric & Regent
 - Developed at Stanford/SLAC, NVIDIA, and LANL
- Programming assignments and the project will use cuNumeric & Regent

Amdahl's Law
Speedup =
$$\frac{1}{(1-p) + (p/s)}$$

where

p = portion of the program sped up
s = factor improvement of that portion

Speed vs. # of Processors for Values of p

Discussion

- Amdahl's law is simple and general
 - Not about a specific machine or program
- And unforgiving
 - To speed up by 1000x, must parallelize 99.9%
 - To reach 10,000x, must parallelize 99.99%
 - And these are not very aggressive targets!

Summit

- 4,000+ nodes
- 6 GPUS/node
- 84 stream multiprocessors (SMs)/GPU
- 64-way processing in each SM
- ~120M "threads"
- 200 PF/sec

Consequences

- Even tiny sequential bottlenecks can matter
 - *None* can remain
- Each order of magnitude improvement requires additional work
- And the temptation to customize to a particular machine is great

Beyond Amdahl's Law

- But Amdahl's Law is only one reason why parallel programming is hard
- Resource management is also hard

An Example

Goal: For all i,j compute $x_{i,j} = F(x_{i-1,j}, x_{i,j-1}, x_{i+1,j}, x_{i,j+1})$

Issue 1

Can I refer to $x_{i,j}$, $x_{i-1,j}$, $x_{i,j-1}$, $x_{i+1,j}$, $x_{i,j+1}$ at the same time?

Why Not?

Can I refer to $x_{i,j}$, $x_{i-1,j}$, $x_{i,j-1}$, $x_{i+1,j}$, $x_{i,j+1}$ at the same time?

Resource: Memory (Hardware Level)

Distributed Memory

• Hardware exposes physically disjoint memories

Shared Memory

• Hardware provides a single hardware address space

Resource: Memory (Program Level)

Global Address Space

 Programming language allows any piece of data to be named anywhere in the machine

Local Address Space

 Programming language only allows data to be named that is "near" the processor

Software vs. Hardware

- Global address space is easy to implement on shared memory hardware
 - Hardware is complex
- Global address space is much more complex to implement on distributed memory hardware
 - Language system is complex

The Example Again

Goal: For all i,j compute $x_{i,j} = F(x_{i-1,j}, x_{i,j-1}, x_{i+1,j}, x_{i,j+1})$

Issue 1b

What is the cost of referring to $x_{i,j}$, $x_{i-1,j}$, $x_{i,j-1}$, $x_{i+1,j}$, $x_{i,j+1}$?

Locality

- Is the data "close" to the processor?
- Local address space
 - Yes, memory references are always cheap
 - Programmer structures program for locality
- Global address space
 - Memory references may have greatly varying cost
 - E.g., on distributed memory machines
 - Or machines with caches

Summary: Memory

- Memory is a critical resource
- Who deals with the reality that memory is physically distributed?
 - Shared memory: the hardware does it
 - *Global address space:* the compiler/runtime does it
 - Local address space: the programmer does it
- Programs can exhibit good or bad locality

Issue 2

Goal: For all i,j compute $x_{i,j} = F(x_{i-1,j}, x_{i,j-1}, x_{i+1,j}, x_{i,j+1})$ In parallel for each i,j. How many copies of the program do I need?

Control

- Control is a resource
- Parallel copies of the program require state
 - At least a *program counter,* but usually more
 - This state must be stored somewhere and managed
- Note this is different from the question of how many processors there are
 - Number of executing "jobs" not necessarily the same as number of processors

Answer 1

One control context for each i,j

Answer 2

One control context for all *i*,*j*

Answer 3

One control context for each processor.

Question

- What is the output for
 - For all i,j compute $x_{i,j} = AVG(x_{i-1,j}, x_{i,j-1}, x_{i+1,j}, x_{i,j+1})$

Issue 2b

Goal: For all i,j compute $x_{i,j} = F(x_{i-1,j}, x_{i,j-1}, x_{i+1,j}, x_{i,j+1})$ In parallel for each i,j. In what order do reads and writes happen?

Issue 2b

Goal: For all i,j compute $x_{i,j} = F(x_{i-1,j}, x_{i,j-1}, x_{i+1,j}, x_{i,j+1})$

Does X_{i-1,j} use the old or new value of X_{i,j} ? Prof. Aiken CS315B Lecture 1

Synchronization

- Many read/write orders are possible
- To ensure a particular order, must use synchronization
 - Multiple control contexts must coordinate their actions
- Large variety of synchronization abstractions
 - Locks, semaphores, condition variables, barriers, ...

Summary: Control

- Control is a resource
 - Replicating control is expensive
- Many control contexts
 - Parallel jobs run asynchronously
 - Synchronization required
- One/few control contexts
 - Can still execute on many data elements
 - Synchronization built-in

Summary: Control (Cont.)

- Who deals with the fact that the hardware provides a limited number of control contexts?
 - Compiler/runtime system may provide more contexts than physically available
 - Or not: Let the programmer deal with it
- Who deals with synchronization?
 - Many strategies from hardware, compiler, programmer, to combinations of all three

Discussion

- Two fundamental resources
- Memory
 - locality
- Control
 - synchronization

Hardware

Hardware

Characteristics

- Operations within a die/chip are fast
 - Off-chip operations are much slower
- The transistor budget for any chip is fixed
 - But is still increasing over time
- Do we spend the transistors on memory or control?

Four Examples

- Vector Processors
- CPUs
- Multicore
- GPUs

Vector Processor

CPUs

Multicore

GPUs

- Control and memory are fundamental resources
- At the hardware-level, different designs make different tradeoffs

The Memory Hierarchy

- Individual cores
 - GPU or CPU w/vector units
- NUMA domains
- Multicore chips
- Boards
- Boxes
- Racks

- Operations within a level are generally faster than operations at the next higher level
- But a level has much less memory than the next level up

Modern Supercomputers

• Consist of

• Strongly hierachical

- CPUs
- Multicore
- Vector processors
- GPUs

Summary

- Parallel programming limited by
 - Amdahl's Law
 - 2D resource management problem
 - Memory & control
 - Different technologies at different scales
 - And the roles they play
- Next time: The Way Things Were
 - How we've programmed these machines for 20+ yrs