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Course Introduction
CS315B
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Administrivia

• Syllabus on cs315.stanford.edu
• Assignments will be managed through Canvas

• Instructor: Alex Aiken
• 9-10:20 TT

• Structure
• 6 (smallish) programming assignments
• A course project
• Some readings (papers and notes)
• No exams

• Office hours 11-12 Wed and 3-4 Fri 
• Ed discussion group
• No lecture recordings



Course Topic

• How do we program modern supercomputers?

• Assumption 1: Current supercomputers are tomorrow’s ordinary 
computers.

• Assumption 2: We need new ways to program contemporary 
machines.
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Course Approach

• Lectures on programming supercomputers
• Past, present and future

• Focus on task-based parallel programming
• And specifically on cuNumeric & Regent
• Developed at Stanford/SLAC, NVIDIA, and LANL

• Programming assignments and the project will use cuNumeric & 
Regent
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Amdahl’s Law

1
Speedup =

(1 – p)   +  (p / s)

where
p = portion of the program sped up
s = factor improvement of that portion
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Speed vs. # of Processors for Values of p
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Discussion

• Amdahl’s law is simple and general
• Not about a specific machine or program

• And unforgiving
• To speed up by 1000x, must parallelize 99.9%
• To reach 10,000x, must parallelize 99.99%
• And these are not very aggressive targets!
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Summit

• 4,000+ nodes
• 6 GPUS/node
• 84 stream multiprocessors (SMs)/GPU
• 64-way processing in each SM

• ~120M ”threads”
• 200 PF/sec
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Consequences

• Even tiny sequential bottlenecks can matter
• None can remain

• Each order of magnitude improvement requires additional work

• And the temptation to customize to a particular machine is great
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Beyond Amdahl’s Law

• But Amdahl’s Law is only one reason why parallel programming is 
hard

• Resource management is also hard
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An Example
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Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1

Goal: For all i,j compute xi,j = F(xi-1,j, xi,j-1, xi+1,j, xi,j+1)



Issue 1
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Can I refer to xi,j, xi-1,j, xi,j-1, xi+1,j, xi,j+1 at the same time?  

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1



Why Not?
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Can I refer to xi,j, xi-1,j, xi,j-1, xi+1,j, xi,j+1 at the same time?  

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1



Resource: Memory    (Hardware Level)

Distributed Memory
• Hardware exposes physically disjoint memories

Shared Memory
• Hardware provides a single hardware address space
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Resource: Memory       (Program Level)

Global Address Space
• Programming language allows any piece of data to be named anywhere in the 

machine

Local Address Space
• Programming language only allows data to be named that is “near” the 

processor
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Software vs. Hardware

• Global address space is easy to implement on shared memory 
hardware
• Hardware is complex

• Global address space is much more complex to implement on 
distributed memory hardware
• Language system is complex
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The Example Again

Prof. Aiken   CS315B    Lecture 1 17

Goal: For all i,j compute xi,j = F(xi-1,j, xi,j-1, xi+1,j, xi,j+1)

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1



Issue 1b

Prof. Aiken   CS315B    Lecture 1 18

What is the cost of referring to xi,j, xi-1,j, xi,j-1, xi+1,j, xi,j+1?

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1



Locality

• Is the data “close” to the processor?

• Local address space
• Yes, memory references are always cheap
• Programmer structures program for locality

• Global address space
• Memory references may have greatly varying cost
• E.g., on distributed memory machines
• Or machines with caches
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Summary: Memory

• Memory is a critical resource

• Who deals with the reality that memory is physically distributed?
• Shared memory: the hardware does it
• Global address space: the compiler/runtime does it
• Local address space: the programmer does it

• Programs can exhibit good or bad locality
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Issue 2
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Goal: For all i,j compute xi,j = F(xi-1,j, xi,j-1, xi+1,j, xi,j+1)
In parallel for each i,j.  
How many copies of the program do I need?

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1



Control

• Control is a resource

• Parallel copies of the program require state
• At least a program counter, but usually more
• This state must be stored somewhere and managed

• Note this is different from the question of how many processors there 
are
• Number of executing “jobs” not necessarily the same as number of 

processors
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Answer 1
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One control context for each i,j

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1



Answer 2
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One control context for all i,j

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1



Answer 3
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One control context for each processor.

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1



Question

• What is the output for
• For all i,j compute xi,j = AVG(xi-1,j, xi,j-1, xi+1,j, xi,j+1)
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Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1



Issue 2b
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Goal: For all i,j compute xi,j = F(xi-1,j, xi,j-1, xi+1,j, xi,j+1)
In parallel for each i,j.  
In what order do reads and writes happen?

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1



Issue 2b
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Goal: For all i,j compute xi,j = F(xi-1,j, xi,j-1, xi+1,j, xi,j+1)

Does xi-1,j use the old or new value of xi,j ?

Xi,j

Xi,j-1

Xi+1,jXi-1,j

Xi,j+1



Synchronization

• Many read/write orders are possible

• To ensure a particular order, must use synchronization
• Multiple control contexts must coordinate their actions

• Large variety of synchronization abstractions
• Locks, semaphores, condition variables, barriers, …
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Summary: Control

• Control is a resource
• Replicating control is expensive

• Many control contexts
• Parallel jobs run asynchronously
• Synchronization required

• One/few control contexts
• Can still execute on many data elements
• Synchronization built-in
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Summary: Control (Cont.)

• Who deals with the fact that the hardware provides a limited number 
of control contexts?
• Compiler/runtime system may provide more contexts than physically 

available
• Or not: Let the programmer deal with it

• Who deals with synchronization?
• Many strategies from hardware, compiler, programmer, to combinations of all 

three
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Discussion 

• Two fundamental resources

• Memory
• locality

• Control
• synchronization
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Hardware
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Hardware
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Characteristics

• Operations within a die/chip are fast
• Off-chip operations are much slower

• The transistor budget for any chip is fixed
• But is still increasing over time

• Do we spend the transistors on memory or control?
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Four Examples

• Vector Processors

• CPUs

• Multicore

• GPUs
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Vector Processor
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CPUs
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Multicore
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GPUs
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Summary

• Control and memory are fundamental resources

• At the hardware-level, different designs make different tradeoffs
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The Memory Hierarchy

• Individual cores
• GPU or CPU w/vector units

• NUMA domains
• Multicore chips
• Boards
• Boxes
• Racks

• Operations within a level are 
generally faster than operations 
at the next higher level

• But a level has much less 
memory than the next level up
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Modern Supercomputers

• Consist of
• CPUs
• Multicore
• Vector processors
• GPUs

• Strongly hierachical
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Summary

• Parallel programming limited by
• Amdahl’s Law
• 2D resource management problem

• Memory & control
• Different technologies at different scales

• And the roles they play

• Next time: The Way Things Were
• How we’ve programmed these machines for 20+ yrs
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