
Prof. Aiken CS 315B Lecture 2 1

Bulk Synchronous and SPMD
Programming

CS315B
Lecture 2

The Bulk Synchronous Model

Prof. Aiken CS 315B Lecture 2 2

Bulk Synchronous Model

• A model
• An idealized machine

• Originally proposed for analyzing parallel algorithms
• Leslie Valiant
• “A Bridging Model for Parallel Computatation”, 1990

Prof. Aiken CS 315B Lecture 2 3

The Machine

Prof. Aiken CS 315B Lecture 2 4

What are some properties of this machine model?

Prof. Aiken CS 315B Lecture 2 5

Computations

• A sequence of supersteps:

• Repeat:
• All processors do local computation
• Barrier
• All processors communicate
• Barrier

Prof. Aiken CS 315B Lecture 2 6

What are properties of this computational model?

Prof. Aiken CS 315B Lecture 2 7

Basic Properties

• Uniform
• compute nodes
• communication costs

• Separate communication and computation

• Synchronization is global

Prof. Aiken CS 315B Lecture 2 8

The Idea

• Programs are
• written for v virtual processors
• run on p physical processors

• If v >= p log p then
• Managing memory, communication and synchronization can be done

automatically within a constant factor of optimal

Prof. Aiken CS 315B Lecture 2 9

How Does This Work?

• Roughly
• Memory addresses are hashed to a random location in the machine
• Guarantees that on average, memory accesses have the same cost
• The extra log p factor of threads are multiplexed onto the p processors to hide

the latency of memory requests
• The processors are kept busy and do no more compute than necessary

Prof. Aiken CS 315B Lecture 2 10

SPMD

Prof. Aiken CS 315B Lecture 2 11

Terminology

• SIMD
• Single Instruction, Multiple Data

• SPMD
• Single Program, Multiple Data

Prof. Aiken CS 315B Lecture 2 12

SIMD = Vector Processing

if (factor == 0)
factor = 1.0

A[1..N] = B[1..N] * factor;
j += factor;

Prof. Aiken CS 315B Lecture 2 13

Picture
if (factor == 0)

factor = 1.0

Prof. Aiken CS 315B Lecture 2 14

A[1] = B[1] *
factor

A[2] = B[2] *
factor

A[3] = B[3] *
factor . . .

j += factor

Comments

• Single thread of control
• Global synchronization at each program instruction

• Can exploit fine-grain parallelism
• Assumption of hardware support

Prof. Aiken CS 315B Lecture 2 15

SPMD = Single Program, Multiple Data

SIMD

if (factor == 0)
factor = 1.0

A[1..N] = B[1..N] * factor;
j += factor;
…

SPMD

if (factor == 0)
factor = 1.0

A[myid] = B[myid] * factor;
j += factor;
…

Prof. Aiken CS 315B Lecture 2 16

Picture
if (factor == 0)

factor = 1.0

Prof. Aiken CS 315B Lecture 2 17

A[1] = B[1] *
factor

A[2] = B[2] *
factor . . .

j += factor

if (factor == 0)
factor = 1.0

j += factor

Comments

• Multiple threads of control
• One (or more) per processor

• Asynchronous
• All synchronization is programmer-specified

• Threads are distinguished by myid

• Choice: Are variables local or global?

Prof. Aiken CS 315B Lecture 2 18

Comparison

• SIMD
• Designed for tightly-coupled, synchronous hardware
• i.e., vector units

• SPMD
• Designed for clusters
• Too expensive to synchronize every statement
• Need a model that allows asynchrony

Prof. Aiken CS 315B Lecture 2 19

MPI

• Message Passing Interface
• A widely used standard
• Runs on everything

• A runtime system

• Most popular way to write SPMD programs

Prof. Aiken CS 315B Lecture 2 20

MPI Programs

• Standard sequential programs
• All variables are local to a thread

• Augmented with calls to the MPI interface
• SPMD model
• Every thread has a unique identifier
• Threads can send/receive messages
• Synchronization primitives

Prof. Aiken CS 315B Lecture 2 21

MPI Point-to-Point Routines

• MPI_Send(buffer, count, type, dest, …)
• MPI_Recv(buffer, count, type, source, …)

Prof. Aiken CS 315B Lecture 2 22

Example
for (….) {

// p = number of chunks of 1D grid, id = process id, h[] = local chunk of the grid

// boundary elements of h[] are copies of neighbors boundary elements

.... Local computation ...

// exchange with neighbors on a 1-D grid

if (0 < id)

MPI_Send (&h[1], 1, MPI_DOUBLE, id-1, 1, MPI_COMM_WORLD);

if (id < p-1)

MPI_Recv (&h[n+1], 1, MPI_DOUBLE, id+1, 1, MPI_COMM_WORLD, &status);

if (id < p-1)

MPI_Send (&h[n], 1, MPI_DOUBLE, id+1, 2, MPI_COMM_WORLD);

if (0 < id)

MPI_Recv (&h[0], 1, MPI_DOUBLE, id-1, 2, MPI_COMM_WORLD, &status);

… More local computation ...

}

Prof. Aiken CS 315B Lecture 2 23

MPI Point-to-Point Routines, Non-Blocking

• MPI_ISend(…)
• MPI_Irecv(…)

• MPI_Wait(…)

Prof. Aiken CS 315B Lecture 2 24

Example
for (….) {

// p = number of chunks of 1D grid, id = process id, h[] = local chunk of the grid

// boundary elements of h[] are copies of neighbors boundary elements

.... Local computation ...

// exchange with neighbors on a 1-D grid

if (0 < id)

MPI_ISend (&h[1], 1, MPI_DOUBLE, id-1, 1, MPI_COMM_WORLD);

if (id < p-1)

MPI_IRecv (&h[n+1], 1, MPI_DOUBLE, id+1, 1, MPI_COMM_WORLD, &status);

if (id < p-1)

MPI_ISend (&h[n], 1, MPI_DOUBLE, id+1, 2, MPI_COMM_WORLD);

if (0 < id)

MPI_IRecv (&h[0], 1, MPI_DOUBLE, id-1, 2, MPI_COMM_WORLD, &status);

MPI_Wait(…1...)

MPI_Wait(...2...)

… More local computation ...

}

Prof. Aiken CS 315B Lecture 2 25

MPI Collective Communication Routines

• MPI_Barrier(…)
• MPI_Bcast(...)
• MPI_Scatter(…)
• MPI_Gather(…)
• MPI_Reduce(…)

Prof. Aiken CS 315B Lecture 2 26

Typical Structure

communicate_get_work_to_do();
barrier; // not always needed
do_local_work();
barrier;
communicate_write_results();

What does this remind you of?

Prof. Aiken CS 315B Lecture 2 27

PGAS Model

• PGAS = Partitioned Global Address Space

• There is one global address space

• But each thread owns a partition of the address space that is more efficient to
access
• i.e., the local memory of a processor

• Equivalent in functionality to MPI
• But typically presented as a programming language
• Examples: Split-C, UPC, Titanium

Prof. Aiken CS 315B Lecture 2 28

PGAS Languages

• No library calls for communication

• Instead, variables can name memory locations on other machines

// Assume y points to a remote location
// The following is equivalent to a send/receive
x = *y

Prof. Aiken CS 315B Lecture 2 29

PGAS Languages

• Also provide collective communication

• Barrier

• Broadcast/Reduce
• 1-many

• Exchange
• All-to-all

Prof. Aiken CS 315B Lecture 2 30

PGAS vs. MPI

• Programming model very similar
• Both provide SPMD

• From a pragmatic point of view, MPI rules
• Easy to add MPI to an existing sequential language

• For productivity, PGAS is better
• Programs filled with low-level details of MPI calls
• PGAS programs easier to modify
• PGAS compilers can know more/do better job

Prof. Aiken CS 315B Lecture 2 31

Summary

• SPMD is well-matched to cluster programming
• Also works well on shared memory machines

• One thread per core
• No need for compiler to discover parallelism
• No danger of overwhelming # of threads

• Model exposes memory architecture
• Local vs. Global variables
• Local computation vs. sends/receives

Prof. Aiken CS 315B Lecture 2 32

Analysis

Prof. Aiken CS 315B Lecture 2 33

Control

SIMD
if (factor == 0)

factor = 1.0
forall (i = 1..N)

A[i] = B[i] * factor;
j += factor;
…

SPMD
if (factor == 0)

factor = 1.0
A[myid] = B[myid] * factor;
j += factor;
…

Prof. Aiken CS 315B Lecture 2 34

Control, Cont.

• SPMD replicates the sequential part of the SIMD computation
• Across all threads!

• Why?
• Often cheaper to replicate computation in parallel than compute in one place

and broadcast
• A general principle . . .

Prof. Aiken CS 315B Lecture 2 35

Global Synchronization Revisited

• In the presence of non-blocking global memory operations, we also
need memory fence operations

• Two choices
• Have a separate classes of memory and control synchronization operations

• E.g., barrier and memory_fence
• Have a single set of operations

• E.g., barrier implies memory and control synchronization

Prof. Aiken CS 315B Lecture 2 36

Message Passing Implementations

• Idea: A memory fence is a special message sent on the network;
when it arrives, all the memory operations are complete

• To work, underlying message system must deliver messages in order

• This is one of the key properties of MPI
• And most message systems

Prof. Aiken CS 315B Lecture 2 37

Bulk Synchronous/SPMD Model

• Easy to understand

• Phase structure guarantees no data races
• Barrier synchronization also easy to understand

• Fits many problems well

Prof. Aiken CS 315B Lecture 2 38

But …

• Assumes 2-level memory hierarchy
• Local/global, a flat collection of homogenous sequential processors

• No overlap of communication and computation

• Barriers scale poorly with machine size
• (# of operations lost) * (# of processors)

Prof. Aiken CS 315B Lecture 2 39

Hierarchy

• Current & future machines are more hierarchical
• 3-4 levels, not 2

• Leads to programs written in a mix of
• MPI (network level)
• OpenMP (node level) + vectorization
• CUDA (GPU level)

• Each is a different programming model

Prof. Aiken CS 315B Lecture 2 40

No Overlap of Computation/Communication

• Leaves major portion of the machine idle in each phase

• And this potential is lost at many scales
• Hierarchical machines again

• Increasingly, communication is key
• Data movement is what matters
• Most of the execution time, most of the energy

Prof. Aiken CS 315B Lecture 2 41

Global Operations

• Global operations (such as barriers) are bad
• Require synchronization across the machine
• Especially bad when there is performance variation among participating

threads

• Need a model that favors asynchrony
• Couple as few things together as possible

Prof. Aiken CS 315B Lecture 2 42

Global Operations Continued

• MPI has evolved to include more asynchronous and point-to-point
primitives

• But these do not always mix well with the collective/global operations

Prof. Aiken CS 315B Lecture 2 43

I/O

• How do programs get initial data? Produce output?

• In many models answer is clear
• Passed in and out from root function

• Map-Reduce

• Multithreaded shared memory applications just use the normal file system
interface

Prof. Aiken CS 315B Lecture 2 44

I/O, Cont.

• Not clear in SPMD

• Program begins running and
• Each thread is running in its own address space
• No thread is special

• No obvious distinguished thread to do I/O

Prof. Aiken CS 315B Lecture 2 45

I/O, Cont.

• Option 1
• Make thread 0 special
• Thread 0 does all I/O on behalf of the program
• Issue: Awkward to read/write large data sets

• Limited by thread 0’s memory size

• Option 2
• Parallel I/O
• Each thread has access to its own file system
• Containing distributed files

• Each file “f” a portion of a collective file “f”

Prof. Aiken CS 315B Lecture 2 46

I/O Summary

• Option 2 is clearly more SPMD-ish

• Creating/deallocating files requires a barrier

• In general, parallel programming languages have not paid much
attention to I/O

Prof. Aiken CS 315B Lecture 2 47

Next Week

• Intro to cuNumeric

• First assignment

Prof. Aiken CS 315B Lecture 2 48

