cuNumeric
 CS315B
 Lecture 3

Overview

- An important special case of programming involves "bulk" operations on collections of data
- Examples
- Find all the words in a document
- Adjust the color of every pixel of an image
- Analyze every sale of a product
- Update every entry in a spreadsheet

Array Programming

- Often the data types involved in such bulk operations are arrays:
- An image is an array of pixels
- A column of a database/spreadsheet is an array of some type
- A document is an array of characters
- Array programming languages focus on whole-array operations
- Advantages:
- Conciseness: Bulk operations over the entire array
- No explicit looping
- Iteration/recursion is "baked in" to the operations
- Performance: Leave the details of the implementation the underlying system
- Might be very different for different hardware, e.g., CPUs or GPUs

History

- First array programming language was APL
- Designed by Ken Iverson in the 1960’s

- Designed for expressing pipelines of operations on bulk data
- Basic data type is the multidimensional array
- Trivia: Special APL keyboards accommodated the many 1 character built-ins
- APL programs can be unreadable strings of Greek letters
- Highly influential
- On functional programming (several languages)
- And array programming (Matlab, R, NumPy)

$$
\{(+f \omega) \div \neq \omega\}
$$

NumPy

- The most popular array programming interface today is NumPy
- A library of array operations
- And also syntax for defining views of arrays
- Python has many other, non-array features
- So NumPy programs tend to mix styles, including using variables, state, etc.

A Brief NumPy Tutorial

A short overview of NumPy arrays

- Defining
- Shape
- Views
- Filters

Using NumPy

\# This line will always appear in a NumPy program import numpy as np

Defining an Array

import numpy as np
\# initialize an array A of 10 elements with the integers $0 . .9$
$A=n p$.arange $(0,10)$

Example: Adding Arrays

import numpy as np
A = np.arange $(0,10)$
\# addition is pointwise if the dimensions match np.add(A, A)

Reshaping

import numpy as np
A = np.arange(0,10)
\# Reshaping is a general operation that changes array dimensions. \# Normally defines a view: creates a new way of naming the array but does \# not make a copy.
\# view the elements of A as a 2×5 array
A.reshape $(2,5)$
\# view the elements of A as a $10 x 1$ (column) array
A.reshape(10,1)

Example: Outer Product

import numpy as np
$\mathrm{A}=\mathrm{np}$.arange $(0,10)$
\# We can use a combination of reshape and broadcast to define a \# concise outer product.
\# Broadcasting duplicates elements to make array arguments match
np.multiply(A,A.reshape(10,1))

Broadcasting

- Broadcasting is used to make two (or more) array arguments to a NumPy operator conformable
- In general, if the dimensions of two arrays do not match and the smaller dimension is 1 , then that dimension in the smaller array is copied to match the dimension of the larger array

A = np.array ([1, 2, 3])
$B=4$
A * B

Slicing

import numpy as np
$\mathrm{A}=\mathrm{np}$. arange $(0,10)$
\# slicing defines views of subsets of an array
$\mathrm{A}[3:]$ \# slice of $4^{\text {th }}$ element to the end of the array
$\mathrm{A}[:-3]$ \# slice up to the $4^{\text {th }}$ element from the end of the array
A[1:-1] \# slice of all but the first and last elements of the array
A.reshape(2,5)[:,1:3] \# slicing in multiple dimensions
A.reshape(2,5)[0:2,1:3] \# same slice written a different way

Example: Moving Average

import numpy as np
$\mathrm{A}=\mathrm{np}$.arange $(0,10)$
\# cumulative sum is one of many NumPy built-in array functions
$B=n p . c u m s u m(A)$
\# moving average of A with a window of size 3
(B[3:] - B[:-3]) / 3.0

Masks

import numpy as np
A = np.arange $(0,10)$
\# Using an array in a predicate returns an array of Boolean results \# Here broadcasting promotes 5 to a 1D array of 5's
$A>5$
$A<=5$
$(2 * A)=\left(A^{* *} 2\right)$

Filters

import numpy as np
A = np.arange $(0,10)$
\# Boolean arrays can be used as array indices to filter arrays
$A[A>5]$
$A[A<=5]$ $A\left[(2 * A)=\left(A^{* *} 2\right)\right]$ \# elements x of A where $2 * x==x * * 2$

A Bigger Example: The Game of Life

- The Game of Life is played on 2D grid in time steps
- Grid cells are either live or dead
- A cell is live or dead at time $t+1$ based on its neighbors at time t
- Cells at the world's edge are always dead
- Defined by George Conway in 1969
- An early example of cellular automata

Rules

- A live cell with < 2 neighbors dies
- From loneliness

- A live cell with > 3 neighbors dies
- From overcrowding
- A live cell with 2 or 3 neighbors survives
- A dead cell with 3 neighbors becomes live

The Game of Life

import numpy as np
Z = np.zeros((300, 600))
$Z[1:-1,1:-1]=n p . r a n d o m . r a n d i n t(0,2, n p . s h a p e(Z[1:-1,1:-1])) \quad \# 0$ is dead, 1 is live
while True:

$$
\begin{aligned}
& N=(Z[0:-2,0:-2]+Z[0:-2,1:-1]+Z[0:-2,2:]+ \\
& Z[1:-1,0:-2] \quad+Z[1:-1,2:]+ \\
& \text { Z[2: , 0:-2] + Z[2: , 1:-1] + Z[2: , 2:]) } \\
& \text { birth }=(N==3) \&(Z[1:-1,1:-1]==0) \\
& \text { survive }=((N==2) \mid(N==3)) \&(Z[1:-1,1:-1]==1) \\
& \text { Z[:,:] = } 0 \\
& \text { Z[1:-1, 1:-1][birth | survive] = } 1
\end{aligned}
$$

Picture

$$
\begin{aligned}
N= & (Z[0:-2,0:-2]+Z[0:-2,1:-1]+Z[0:-2,2:]+ \\
& Z[1:-1,0:-2] \quad+Z[1:-1,2:]+ \\
& Z[2:, 0:-2]+Z[2:, 1:-1]+Z[2:, 2:])
\end{aligned}
$$

Summing these 8 subarrays computes the number of live neighbors for each cell in the interior of the space.

Explanation

\# N is a 2D array of the number of neighbors of each cell
\# birth is a 2D Boolean array; a cell is true if it is has 3 neighbors and is dead birth $=(N==3) \&(Z[1:-1,1:-1]==0)$
\# survive is a 2D Boolean array; a cell is true if it is has 2 or 3 neighbors and is live survive $=((N==2) \mid(N==3)) \&(Z[1:-1,1:-1]==1)$
\# create a new generation
\# the interior cells of Z are live if they are born or survive the previous time step
$\mathrm{Z}[:,:]=0$
Z[1:-1, 1:-1][birth | survive] = 1

The Game of Life

import numpy as np
Z = np.zeros((300, 600))
$Z[1:-1,1:-1]=n p . r a n d o m . r a n d i n t(0,2, n p . s h a p e(Z[1:-1,1:-1])) \quad \# 0$ is dead, 1 is live
while True:

$$
\begin{aligned}
& N=(Z[0:-2,0:-2]+Z[0:-2,1:-1]+Z[0:-2,2:]+ \\
& Z[1:-1,0:-2] \quad+Z[1:-1,2:]+ \\
& \text { Z[2: , 0:-2] + Z[2: , 1:-1] + Z[2: , 2:]) } \\
& \text { birth }=(N==3) \&(Z[1:-1,1:-1]==0) \\
& \text { survive }=((N==2) \mid(N==3)) \&(Z[1:-1,1:-1]==1) \\
& \text { Z[:,:] = } 0 \\
& \text { Z[1:-1, 1:-1][birth | survive] = } 1
\end{aligned}
$$

CuNumeric

- CuNumeric is an implementation of the NumPy interface
- To use CuNumeric, replace
import numpy as np
by
import cunumeric as np
- Automatically runs NumPy programs in parallel
- On multiple GPUs
- Across large clusters
- Your homework
- Write a cuNumeric image processing program
- In general: Use bulk NumPy operators as much as possible - the more work in a single operation, the better!
- Next time: How cuNumeric works

