
Prof. Aiken CS 315B Lecture 5 1

Regent: Tasks
CS315B

Lecture 5

Design Goals

• Sequential semantics
• The better to understand what you write
• Parallelism is extracted automatically

• Throughput-oriented
• The latency of a single thread/process is (mostly) irrelevant
• The overall time is what matters

• Runtime decision making
• Because machines are unpredictable/dynamic

Prof. Aiken CS 315B Lecture 5 2

Throughput-Oriented

• Keep the machine busy

• How? Ideally,
• Every core has a queue of independent work to do
• Every memory unit has a queue of transfers to do
• At all times

• C.f., bulk-synchronous model

Prof. Aiken CS 315B Lecture 5 3

Consequences

• Highly asynchronous
• Minimize synchronization
• Esp. global synchronization

• Sequential semantics but support for parallelism

• Emphasis on describing the structure of data
• Next lecture

Prof. Aiken CS 315B Lecture 5 4

Regent Stack

Prof. Aiken CS 315B Lecture 5 5

Regent
Language and compiler

Legion
High-level runtime

Realm
Low-level runtime

Lua
Host language

Terra
Sequential performance

Examples 0 & 1

• Embedded in Lua
• Popular scripting language in the graphics community

• Excellent interoperation with C
• And with other languages

• Python-ish syntax
• For both Lua and Regent

Prof. Aiken CS 315B Lecture 5 6

Tasks

• Tasks are Regent’s unit of parallel execution
• Distinguished functions that can be executed asynchronously

• No preemption
• Tasks will run until they block or terminate
• And ideally they don’t block …

Prof. Aiken CS 315B Lecture 5 7

Examples 2 & 3

• Tasks can call subtasks

• Nested parallelism
• To arbitrary depth

• Terminology: parent and child tasks

If a parent task inspects the result of a child task, the parent task blocks pending
completion of the child task.

Prof. Aiken CS 315B Lecture 5 8

Blocking

• Blocking means a task cannot continue
• So the task stops running

• Blocking does not prevent independent work from being done
• If the processor has something else to do

• But it does prevent the thread from continuing and launching more
tasks

Prof. Aiken CS 315B Lecture 5 9

Examples 4 & 5

• “for all” style parallelism

• Note the order of completion of the tasks
• main() finishes first (or almost first)!
• All subtasks managed by the runtime system
• Subtasks execute in non-deterministic order

• How?
• Regent notices that the tasks are independent
• In 4, no task depends on another task for its inputs

Prof. Aiken CS 315B Lecture 5 10

Runtime Dependence Analysis

• Example 5 is more involved
• Positive tasks (print a positive integer)
• Negative tasks (print a negative integer)

• Some tasks are dependent
• The task for -5 depends on the task for 5
• Note loop in main() does not block on the value of j!

• Some are independent
• Positive tasks are independent of each other
• Negative tasks are independent of each other

Prof. Aiken CS 315B Lecture 5 11

Computing the Area of a Unit Circle

• A Monte Carlo simulation to compute
the area of a unit circle inscribed in a
square

• Throw darts
• Fraction of darts landing in the circle =

ratio of circle’s area to square’s area

Prof. Aiken CS 315B Lecture 5 12

1

x

y

Computing the Area of a Unit Circle

• Example 6
• Slow!
• Why?

• Example 7
• Faster!

Prof. Aiken CS 315B Lecture 5 13

Leaf Tasks

• Leaf tasks call no other tasks
• The “leaves” of the task tree

• Leaf tasks are sequential programs
• And generally where the heavy compute will be

• Thus, leaf tasks should be optimized for latency, not throughput
• Want them to finish as fast as possible!

Prof. Aiken CS 315B Lecture 5 14

Terra

• Terra is a low-level, typed language embedded in Lua

• Designed to be like C
• And to compile to similarly efficient code

• Also supports vector intrinsics
• Not illustrated today

• Example 8

Prof. Aiken CS 315B Lecture 5 15

Considerations in Writing Regent Programs

• The granularity of tasks must be sufficient
• Don’t write very short running tasks

• Don’t block in tasks that launch many subtasks

• Regent’s code generator is pretty good
• As good as Terra for almost everything
• But if you need extra leaf task performance, Terra is an option

Prof. Aiken CS 315B Lecture 5 16

Profiling

• Is the performance any good?
• You need to profile the code to find out

• Learn to use legion_prof
• And use it early!

• Example 8 again …

Prof. Aiken CS 315B Lecture 5 17

Making Improvements

• If you don’t like the profile, what can you do?

• Change the program
• Remove dependencies that cause control tasks to block
• Improve slow leaf tasks

• Next time
• Improve memory/communication use

Prof. Aiken CS 315B Lecture 5 18

Mapping

• Mapping is
• The assignment of tasks to cores
• The assignment of data to memories
• … and many other policy decisions ...

• Mapping is under programmer control
• Completely programmable

• Programs use the default mapper if no other mapper is supplied.

• More on mapping next week ...

Prof. Aiken CS 315B Lecture 5 19

