
Prof. Aiken CS 315B Lecture 6 1

Regent: Regions
CS315B

Lecture 6

Regions

• A region is a (typed) collection

• Regions are the cross product of
• An index space
• A field space

Prof. Aiken CS 315B Lecture 6 2

Example 9

Prof. Aiken CS 315B Lecture 6 3

false

false

false

false

false

true

true

true

true

false

0

1

2

3

4

5

6

7

8

9

Bit

Discussion

• Regions are the way to organize large data collections in Regent

• Can have any number of fields

• Default support for 1D, 2D, 3D index spaces
• Can build the system to support up to 9D

Prof. Aiken CS 315B Lecture 6 4

Privileges

• A task that takes region arguments must
• Declare its privileges on the region
• Reads, Writes, Reduces

• The task may only perform operations for which it has privileges
• Including any subtasks it calls

• Example 10

Prof. Aiken CS 315B Lecture 6 5

An Aside: Legion Spy

• A tool for showing ordering dependencies
• Very useful for figuring out why things are not running in parallel

• Workflow
• Use Legion Prof to find idle time (white space)
• Use Legion Spy to examine tasks that are delayed

• What are they waiting for?!

• Example 11

Prof. Aiken CS 315B Lecture 6 6

More Privileges

• An example with another task that both reads and writes a region

• Example 11

Prof. Aiken CS 315B Lecture 6 7

Partitioning

• To enable parallelism on a region, partition it into smaller pieces
• And then run a task on each piece

• Steps:
• Color elements of the region
• Partition the region, creating one subregion for each color

Prof. Aiken CS 315B Lecture 6 8

Partitioning Example

Prof. Aiken CS 315B Lecture 6 9

false

false

false

false

false

true

true

true

true

false

0

1

2

3

4

5

6

7

8

9

Bit

Partitioning Example

Prof. Aiken CS 315B Lecture 6 10

false

false

false

false

false

true

true

true

true

false

0

1

2

3

4

5

6

7

8

9

Bit

bit_region_partition[0]

bit_region_partition[1]

Discussion

• Example 12

• Partitioning does not create copies
• It names subsets of the data

• Partitioning does not remove the parent
• It still exists and can be used

• Regions and partitions are first-class values
• Can be created, destroyed, stored in data structures, passed to and returned from tasks

Prof. Aiken CS 315B Lecture 6 11

More Discussion

• The same data can be partitioned multiple ways
• Again, these are just names for subsets

• Subregions can themselves be partitioned

Prof. Aiken CS 315B Lecture 6 12

Region Trees

Prof. Aiken CS 315B Lecture 6 13

0

bit_region

1 2 3 4

Dependence Analysis

• Regent uses tasks region declarations to compute which tasks can run
in parallel
• What region is being accessed

• Does it overlap with another region that is in use?
• What field is being accessed

• If a task is using an overlapping region, is it using the same field?
• What are the privileges?

• If two tasks are accessing the same field, are they both reading or both reducing?

Prof. Aiken CS 315B Lecture 6 14

Coherence

• Coherence is a fourth dimension of information for dependence
analysis
• How are other tasks allowed to use the region?

• For today, all coherence is exclusive
• A task always has exclusive access to region arguments
• The default (no need to declare)

Prof. Aiken CS 315B Lecture 6 15

A Crucial Fact

• Regent analyzes sibling tasks
• Tasks launched directly by the same parent task

• Theorem: Analyzing dependencies between sibling tasks is sufficient
to guarantee sequential semantics

• Never check for dependencies otherwise
• Crucial to the overall design of Regent

Prof. Aiken CS 315B Lecture 6 16

Consequences

• Dependence analysis is a source of runtime overhead

• Can be reduced by reducing the number of sibling tasks
• Group some tasks into subtasks

• But beware!
• This may also reduce the available parallelism

• Example 14

Prof. Aiken CS 315B Lecture 6 17

Example 14

• Note that passing a region to a task does not mean the data is copied
to where that task runs
• C.f., launcher task must name the parent region for type checking reasons

• If the task doesn’t touch a region/field, that data doesn’t need to
move

Prof. Aiken CS 315B Lecture 6 18

Fills

• A better way to initialize regions is to use fill operations

fill(region.field, value)

• Example 15

Prof. Aiken CS 315B Lecture 6 19

Multiple Partitions

Prof. Aiken CS 315B Lecture 6 20

0

bit_region

1 2 3 4 5 0 1 2

20 elements each10 elements each

Discussion

• Different views onto the same data

• Again, can have multiple views in use at the same time

• Regent will figure out the data dependencies
• Example 16 & 17

Prof. Aiken CS 315B Lecture 6 21

Aliased Partitions

Prof. Aiken CS 315B Lecture 6 22

0

bit_region

1 2 3 4 5 0 1

aliaseddisjoint

Example 18

• Equal partitions

• Aliased partitions

Prof. Aiken CS 315B Lecture 6 23

Summary

• Significant Regent applications have interesting region trees
• Multiple views
• Aliased partitions
• Multiple levels of nesting

• And complex task dependencies
• Subregions, fields, privileges, coherence

• Regions express locality
• Data that will be used together
• An example of a “local address space” design

• Tasks can only access their region arguments

Prof. Aiken CS 315B Lecture 6 24

