
Prof. Aiken CS 315B Lecture 10 1

Two Topics: IO & Control
Replication

CS315B
Lecture 10

I/O in Parallel Programming

• I/O tends to be an afterthought in parallel programming systems

• Many papers ignore I/O time in reported results!

• But in real life, I/O time is … time

Prof. Aiken CS 315B Lecture 10 2

Regent I/O

• The situation is better with Regent

• Already have the notion
• There are distinct collections of data

• regions
• That can be in different places, have different layouts, etc.
• And the details are kept abstract

• Programmer doesn’t need to know how data is accessed

Prof. Aiken CS 315B Lecture 10 3

Regent I/O Outline

• Interpret files as regions
• Integrate I/O into the programming model

• Why?
• Want to overlap I/O with computation
• Need to define consistency semantics

• Bottom line
• I/O is (almost) like any other data movement

Prof. Aiken CS 315B Lecture 10 4

Attach Operation
• Attach external resource to a region
• Normal files, formatted files (HDF5), …

IndexSpace ó HDF DataSpace

Fields ó
HDF Datasets

Prof. Aiken CS 315B Lecture 10 5

Attach Operation
Semantics

Invalidate existing physical instance of lr
Maps lr to a new physical instance that represents external data (no
external I/O)

Application

Legion
Runtime

Region lr

Instance 1

Instance 2

Node 1

Instance 3

Node 2
Prof. Aiken CS 315B Lecture 10 6

Attach Operation
Semantics

Invalidate existing physical instance of lr
Maps lr to a new physical instance that represents external data (no
external I/O)

Application

Legion
Runtime

Region lr

Node 1 Node 2

Instance 4

External
Resource

Attach
Instance 1

Instance 2

Instance 3

Prof. Aiken CS 315B Lecture 10 7

Digression: Task Coherence

Privileges
• Reads
• Reads/Writes
• Reduces (with operator)

Coherence
• Exclusive
• Atomic
• Simultaneous
• Relaxed

• Coherence declarations are wrt
sibling tasks

Prof. Aiken CS 315B Lecture 10 8

Attach Operation

• Attached region accessed using simultaneous coherence
• Different tasks access the region simultaneously
• Requires that all tasks must use the only valid physical instance

• Copy restriction
• Simultaneous coherence implies tasks cannot create local copies
• May result in inefficient memory accesses

Prof. Aiken CS 315B Lecture 10 9

Acquire/Release

• For regions with simultaneous coherence

• Acquire removes the copy restriction
• Can create copies in any memory
• Up to application to know this is OK!

• Release restores the copy restriction
• Invalidates all existing local copies
• Flushes dirty data back to the file

Prof. Aiken CS 315B Lecture 10 10

Acquire/Release Example

Application

Legion
Runtime

Region r

Node 1 Node 2

Ext Inst

External
Resource

Local InstLocal Inst

Copy

Task Task

AcquireRelease

Flush

Prof. Aiken CS 315B Lecture 10 11

Opaque Data Sources

• Can also attach to sources that are other programs
• E.g., read/write in-memory data structures from another process

• Done through a serialization/deserialization interface
• Attach specifies the ser/des routines

Prof. Aiken CS 315B Lecture 10 12

S3D I/O Example

• A production combustion simulation
• Checkpoint after fixed # of time steps

30 76.5

11.5

14.8

7.1

4.6

2.1
1.1

2.7 2.7 2.9 3.3

Prof. Aiken CS 315B Lecture 10 13

I/O Summary

• Definitely a useful feature!

• And less mature than other features
• But simple cases will work fine

• Let us know if you need/want to use I/O

Prof. Aiken CS 315B Lecture 10 14

Control Replication

Prof. Aiken CS 315B Lecture 10 15

Implicit Parallel Programming Template

while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end

Prof. Aiken CS 315B Lecture 10 16

How Do We Scale This Program?

while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end

• Make more Parts

• Make each subregion R smaller

Prof. Aiken CS 315B Lecture 10 17

Amdahl Strikes Back

• Recall Amdahl’s law
• Parallel speedup is limited by the sequential portion left un-parallelized
• There is some sequential overhead to launching tasks on a single processor

• If we double the # of subregions
• Each subregion is ½ the size, so <= ½ of the work
• Launch overhead doubles
• Useful compute/overhead ratio decreases by >= 4X

Prof. Aiken CS 315B Lecture 10 18

Picture

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}

Prof. Aiken CS 315B Lecture 10 19

T

task1

. . .

task1

. . .

task2

task2

Analysis

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}

Prof. Aiken CS 315B Lecture 10 20

T

task1

. . .

task1

. . .

task2

task2

|Parts| = 1
|Task launch| = 100 usecs
|task1| = 1 seconds
|task2| = 1 seconds

200 usecs

1 secs

1 secs

Total: 2 seconds

Analysis

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}

Prof. Aiken CS 315B Lecture 10 21

T

task1

. . .

task1

. . .

task2

task2

|Parts| = 2
|Task launch| = 100 usecs
|task1| = .5 seconds
|task2| = .5 seconds

400 usecs

.5 secs

.5 secs

Total: 1 second

Analysis

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}

Prof. Aiken CS 315B Lecture 10 22

T

task1

. . .

task1

. . .

task2

task2

|Parts| = 4
|Task launch| = 100 usecs
|task1| = 250 msecs
|task2| = 250 msecs

800 usecs

250 msecs

250 msecs

Total: 500 msecs

Analysis

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}

Prof. Aiken CS 315B Lecture 10 23

T

task1

. . .

task1

. . .

task2

task2

|Parts| = 8
|Task launch| = 100 usecs
|task1| = 125 msecs
|task2| = 125 msecs

1.6 msecs

125 msecs

125 msecs

Total: 250 msecs

Analysis

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}

Prof. Aiken CS 315B Lecture 10 24

T

task1

. . .

task1

. . .

task2

task2

|Parts| = 16
|Task launch| = 100 usecs
|task1| = 63 msecs
|task2| = 63 msecs

3.2 msecs

63 msecs

63 msecs

Total: 125 msecs

Analysis

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}

Prof. Aiken CS 315B Lecture 10 25

T

task1

. . .

task1

. . .

task2

task2

|Parts| = 32
|Task launch| = 100 usecs
|task1| = 30 msecs
|task2| = 30 msecs

6.4 msecs

30 msecs

30 msecs

Total: 60 msecs

Analysis

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}

Prof. Aiken CS 315B Lecture 10 26

T

task1

. . .

task1

. . .

task2

task2

|Parts| = 64
|Task launch| = 100 usecs
|task1| = 15 msecs
|task2| = 15 msecs

13 msecs

15 msecs

15 msecs

Total: 30 msecs

Analysis

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}

Prof. Aiken CS 315B Lecture 10 27

T

task1

. . .

task1

. . .

task2

task2

|Parts| = 128
|Task launch| = 100 usecs
|task1| = 7.5 msecs
|task2| = 7.5 msecs

26 msecs

7.5 msecs

7.5 msecs

Total: 26 msecs

What Does That Mean?

while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end

• Can scale this program to 8 or 16
nodes
• Should be more, but…

• We want to run on 100’s or
1,000’s of nodes

Prof. Aiken CS 315B Lecture 10 28

SPMD Programming Revisited

• Recall that SPMD programs
• Launch 1 task per processor at program start-up
• These tasks run for the duration of the program
• Tasks explicitly communicate to exchange data

• Notice
• SPMD programs launch the minimum # of tasks to keep the machine busy
• These tasks run for the maximum amount of time
• Best possible launch overhead/work ratio!

Prof. Aiken CS 315B Lecture 10 29

How Do We Scale This Program?

while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end

must_epoch
for i = 1,num_tasks do

task(part[i],phaseb[i])
end

where

tasks know which other tasks they have to
communicate with

Prof. Aiken CS 315B Lecture 10 30

The Price

• SPMD programs minimize distributed overheads related to control

• The price is explicit parallel programming
• Tasks must communicate with each other while they execute
• Introduces synchronization, message passing …

Prof. Aiken CS 315B Lecture 10 31

Implicit Parallelism
Traditional auto-parallelization
[Irigoin 91; Blume 95; Hall 96; …]

for step = 0, nsteps:
for i, j in grid:
out[i,j] = F(in[i,j], in[i+1, j], …)
…

Inspector/executor method
[Crowley 89; Ravishankar 12; …]

for step = 0, nsteps:
for c in mesh:
out[c] = G(in[c],in[neighbor[c]])

…

out in out in

Requires static analysis of
individual memory accesses
Limited applicability

Requires dynamic analysis of
individual memory accesses
Expensive runtime analysis

Prof. Aiken CS 315B Lecture 10 32

Task-Based Implicit Parallelism
task tF(out, in):

for i, j in out:
out[i,j] = F(in[i,j], in[i+1, j], …)

for step = 0, nsteps:
for sg in grid:

tF(out[sg], in[sg])
…

task tG(out, in):
for c in out:
out[c] = G(in[c], in[neighbor[c]])

for step = 0, nsteps:
for sm in mesh:

tG(out[sm], in[sm])
…

out
in out in

User specifies coarse-grain tasks (and data)
Analysis performed at level of tasks (instead of iterations)

Dynamic analysis is better but still expensiveProf. Aiken CS 315B Lecture 10 33

Task Execution (Not Replicated)

• Sequential execution: tasks form a stream in program order
• System discovers parallelism by analyzing dependencies
• Dataflow is scheduled and copies are inserted as needed

…

stream of tasks

…

dataflow

…

execution schedule

…

node 0

node 1

dependence
analysis

scheduling

copy

analysis is
sequential

Prof. Aiken CS 315B Lecture 10 34

Control Replication
Technique to generate scalable SPMD code from implicitly
parallel (task-based) programs

Asymptotic reduction in steady state analysis
O(1) instead of O(N) in number of nodes

Task Execution (Replicated)

…

stream(s) of tasks

…

dataflow

…

execution schedule

…

node 0

node 1

copy

…

…

…

…

copy
sync

…

…

copy
sync

control replication

sync
copy

node 0

node 1

stream 0

stream 1

stream 0

stream 1

analysis is
now parallel

dependence
analysis

scheduling

impicitly
parallel

explicitly
parallel Prof. Aiken CS 315B Lecture 10 36

Control Replication

Prof. Aiken CS 315B Lecture 10 37

T

task1

. . .

task1

. . .

task2

task2

T

task1

. . .

task1

. . .

task2

task2

T

task1

. . .

task1

. . .

task2

task2

Control Replication

• Regent can do this for you!

• __demand(__replicable)

• Takes a program in implicit parallel style, converts it to SPMD style

• Restrictions
• Each “rank” must execute the same sequence of Legion API calls

• i.e., the control code is replicated in each rank

Prof. Aiken CS 315B Lecture 10 38

Control Replication

• We recommend using control replication for your project
• Write in implicit style

• Should scale to 256-512 nodes
• At least

Prof. Aiken CS 315B Lecture 10 39

