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Two Topics: IO & Control 
Replication
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I/O in Parallel Programming

• I/O tends to be an afterthought in parallel programming systems

• Many papers ignore I/O time in reported results!

• But in real life, I/O time is … time
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Regent I/O

• The situation is better with Regent

• Already have the notion
• There are distinct collections of data

• regions
• That can be in different places, have different layouts, etc.
• And the details are kept abstract

• Programmer doesn’t need to know how data is accessed
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Regent I/O Outline

• Interpret files as regions
• Integrate I/O into the programming model

• Why?
• Want to overlap I/O with computation
• Need to define consistency semantics

• Bottom line
• I/O is (almost) like any other data movement
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Attach Operation
• Attach external resource to a region
• Normal files, formatted files (HDF5), …

IndexSpace ó HDF DataSpace

Fields ó
HDF Datasets
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Attach Operation
Semantics

Invalidate existing physical instance of lr
Maps lr to a new physical instance that represents external data (no 
external I/O)

Application

Legion
Runtime

Region lr

Instance 1

Instance 2

Node 1

Instance 3

Node 2
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Attach Operation
Semantics

Invalidate existing physical instance of lr
Maps lr to a new physical instance that represents external data (no 
external I/O)

Application

Legion
Runtime

Region lr

Node 1 Node 2

Instance 4

External 
Resource

Attach
Instance 1

Instance 2

Instance 3
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Digression: Task Coherence

Privileges
• Reads
• Reads/Writes
• Reduces (with operator)

Coherence
• Exclusive
• Atomic
• Simultaneous
• Relaxed

• Coherence declarations are wrt 
sibling tasks
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Attach Operation

• Attached region accessed using simultaneous coherence
• Different tasks access the region simultaneously
• Requires that all tasks must use the only valid physical instance

• Copy restriction
• Simultaneous coherence implies tasks cannot create local copies
• May result in inefficient memory accesses 
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Acquire/Release

• For regions with simultaneous coherence

• Acquire removes the copy restriction
• Can create copies in any memory
• Up to application to know this is OK!

• Release restores the copy restriction
• Invalidates all existing local copies
• Flushes dirty data back to the file
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Acquire/Release Example

Application

Legion
Runtime

Region r

Node 1 Node 2

Ext Inst

External 
Resource

Local InstLocal Inst

Copy

Task Task

AcquireRelease

Flush
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Opaque Data Sources

• Can also attach to sources that are other programs
• E.g., read/write in-memory data structures from another process

• Done through a serialization/deserialization interface
• Attach specifies the ser/des routines
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S3D I/O Example

• A production combustion simulation 
• Checkpoint after fixed # of time steps

30 76.5

11.5

14.8

7.1

4.6

2.1
1.1

2.7 2.7 2.9 3.3
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I/O Summary

• Definitely a useful feature!

• And less mature than other features
• But simple cases will work fine

• Let us know if you need/want to use I/O
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Control Replication
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Implicit Parallel Programming Template

while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
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How Do We Scale This Program?

while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end

• Make more Parts

• Make each subregion R smaller

Prof. Aiken    CS 315B  Lecture 10 17



Amdahl Strikes Back

• Recall Amdahl’s law
• Parallel speedup is limited by the sequential portion left un-parallelized
• There is some sequential overhead to launching tasks on a single processor

• If we double the # of subregions
• Each subregion is ½ the size, so <= ½ of the work
• Launch overhead doubles
• Useful compute/overhead ratio decreases by >= 4X
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Picture

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}
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T

task1

. . .

task1

. . .

task2

task2



Analysis

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}
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T

task1

. . .

task1

. . .

task2

task2

|Parts| = 1
|Task launch| = 100 usecs
|task1| = 1 seconds
|task2| = 1 seconds

200 usecs

1 secs

1 secs

Total: 2 seconds



Analysis

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}
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T

task1

. . .

task1

. . .

task2

task2

|Parts| = 2
|Task launch| = 100 usecs
|task1| = .5 seconds
|task2| = .5 seconds

400 usecs

.5 secs

.5 secs

Total: 1 second



Analysis

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}
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T

task1

. . .

task1

. . .

task2

task2

|Parts| = 4
|Task launch| = 100 usecs
|task1| = 250 msecs
|task2| = 250 msecs

800 usecs

250 msecs

250 msecs

Total: 500 msecs



Analysis

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}
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T

task1

. . .

task1

. . .

task2

task2

|Parts| = 8
|Task launch| = 100 usecs
|task1| = 125 msecs
|task2| = 125 msecs

1.6 msecs

125 msecs

125 msecs

Total: 250 msecs



Analysis

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}
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T

task1

. . .

task1

. . .

task2

task2

|Parts| = 16
|Task launch| = 100 usecs
|task1| = 63 msecs
|task2| = 63 msecs

3.2 msecs

63 msecs

63 msecs

Total: 125 msecs



Analysis

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}
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T

task1

. . .

task1

. . .

task2

task2

|Parts| = 32
|Task launch| = 100 usecs
|task1| = 30 msecs
|task2| = 30 msecs

6.4 msecs

30 msecs

30 msecs

Total: 60 msecs



Analysis

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}
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T

task1

. . .

task1

. . .

task2

task2

|Parts| = 64
|Task launch| = 100 usecs
|task1| = 15 msecs
|task2| = 15 msecs

13 msecs

15 msecs

15 msecs

Total: 30 msecs



Analysis

task T(){
while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end
}
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T

task1

. . .

task1

. . .

task2

task2

|Parts| = 128
|Task launch| = 100 usecs
|task1| = 7.5 msecs
|task2| = 7.5 msecs

26 msecs

7.5 msecs

7.5 msecs

Total: 26 msecs



What Does That Mean?

while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end

• Can scale this program to 8 or 16 
nodes
• Should be more, but…

• We want to run on 100’s or 
1,000’s of nodes
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SPMD Programming Revisited

• Recall that SPMD programs
• Launch 1 task per processor at program start-up
• These tasks run for the duration of the program
• Tasks explicitly communicate to exchange data

• Notice
• SPMD programs launch the minimum # of tasks to keep the machine busy
• These tasks run for the maximum amount of time
• Best possible launch overhead/work ratio!
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How Do We Scale This Program?

while (…) do
for R in Parts do

task1(R)
end
for R in Parts do

task2(R)
end

end

must_epoch
for i = 1,num_tasks do

task(part[i],phaseb[i])
end

where

tasks know which other tasks they have to 
communicate with
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The Price

• SPMD programs minimize distributed overheads related to control

• The price is explicit parallel programming
• Tasks must communicate with each other while they execute
• Introduces synchronization, message passing …
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Implicit Parallelism
Traditional auto-parallelization
[Irigoin 91; Blume 95; Hall 96; …]

for step = 0, nsteps:
for i, j in grid:
out[i,j] = F(in[i,j], in[i+1, j], …)
…

Inspector/executor method
[Crowley 89; Ravishankar 12; …]

for step = 0, nsteps:
for c in mesh:
out[c] = G(in[c],in[neighbor[c]])

…

out in out in

Requires static analysis of 
individual memory accesses
Limited applicability

Requires dynamic analysis of 
individual memory accesses
Expensive runtime analysis
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Task-Based Implicit Parallelism
task tF(out, in):

for i, j in out:
out[i,j] = F(in[i,j], in[i+1, j], …)

for step = 0, nsteps:
for sg in grid:

tF(out[sg], in[sg])
…

task tG(out, in):
for c in out:
out[c] = G(in[c], in[neighbor[c]])

for step = 0, nsteps:
for sm in mesh:

tG(out[sm], in[sm])
…

out
in out in

User specifies coarse-grain tasks (and data)
Analysis performed at level of tasks (instead of iterations)
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Task Execution (Not Replicated)

• Sequential execution: tasks form a stream in program order
• System discovers parallelism by analyzing dependencies
• Dataflow is scheduled and copies are inserted as needed

…

stream of tasks

…

dataflow

…

execution schedule

…

node 0

node 1

dependence
analysis

scheduling

copy

analysis is 
sequential
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Control Replication
Technique to generate scalable SPMD code from implicitly 
parallel (task-based) programs

Asymptotic reduction in steady state analysis
O(1) instead of O(N) in number of nodes



Task Execution (Replicated)

…

stream(s) of tasks

…

dataflow

…

execution schedule

…

node 0

node 1

copy

…

…

…

…

copy
sync

…

…

copy
sync

control replication

sync
copy

node 0

node 1

stream 0

stream 1

stream 0

stream 1

analysis is
now parallel

dependence
analysis

scheduling

impicitly 
parallel

explicitly 
parallel Prof. Aiken    CS 315B  Lecture 10 36



Control Replication
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Control Replication

• Regent can do this for you!

• __demand(__replicable)

• Takes a program in implicit parallel style, converts it to SPMD style

• Restrictions
• Each “rank” must execute the same sequence of Legion API calls

• i.e., the control code is replicated in each rank
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Control Replication

• We recommend using control replication for your project
• Write in implicit style

• Should scale to 256-512 nodes
• At least
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