
Prof. Aiken CS 315B Lecture 11 1

Charm++
CS315B

Lecture 11

History

• Charm++ designed in the early 1990’s
• Based on Charm from the late 1980’s

• Parallel machines of the time were
• Custom architectures, fading in importance
• Networks of commodity workstations

• Much cheaper
• Eventually became the dominant compute platform

Prof. Aiken CS 315B Lecture 11 2

History (Cont.)

• This is the environment that led to the rise of MPI
• Two-level programming model
• On-node managed with standard programming
• Off-node managed by message passing

• Charm++ has a similar top-level design
• With a focus on integrating object-oriented features

Prof. Aiken CS 315B Lecture 11 3

Chares

• The basic unit of computation and parallelism in Charm++ is a chare

• An object
• A set of entry methods

• Take a single message argument
• Entry methods can be invoked by other chares

Prof. Aiken CS 315B Lecture 11 4

Message Passing Model

• A chare responds to one message at a time
• Chares are single-threaded
• Entry point methods always run to completion

• No interrupts

• Flexibility in which message is handled next
• When multiple entry point methods could be invoked, configurable policies

determine choice
• E.g., messages can have priorities

Prof. Aiken CS 315B Lecture 11 5

Chare Classes

• Chares are special in Charm++

chare MyChareType {
entry MyChareType(args);
entry void MyMethod(args);

}

• The Charm++ preprocessor/compiler generates C++ classes and
methods from this spec

Prof. Aiken CS 315B Lecture 11 6

Creating Chares

• Chares can be created individually

Cproxy_X x = X::ckNew(args);

• To create a chare on a specific processor:

Cproxy_X x = X::ckNew(args,proc);

Prof. Aiken CS 315B Lecture 11 7

What Are Proxies?

• Handles on remote objects
• The chare itself is in some unknown location, usually not local
• The programmer iteracts with proxy objects

• To invoke a method on a chare, invoke the method on its local proxy

• Proxies are an artifact of being embedded in C++
• Could be avoided in a language with its own syntax/semantics

Prof. Aiken CS 315B Lecture 11 8

Method Invocation on Chares

chareProxy.EntryMethod(args)

• Asynchronous, does not block
• Calling thread continues

• And one-sided, no explicit acknowledgment

Prof. Aiken CS 315B Lecture 11 9

Creating Chares

• Chares can be created individually

• More commonly, chare arrays are used

carray = ClassName::cknew(numElements)
carray[0].entry(msg)

Prof. Aiken CS 315B Lecture 11 10

Advantages of Chare Arrays

• Easy to create lots of chares
• Which are automatically distributed around the machine

• Easy to name chares
• A chare can easily refer to its neighbors, a distinguished chare, etc. using array

indices

Prof. Aiken CS 315B Lecture 11 11

Hello World, Version 1

helloArray = Hello::cknew(numElements);
helloArray[0].sayHi(-1);

…
Hello {

void Hello::sayHi(int from) {
printf(“Hello from %d\n”, thisIndex);

if thisIndex < (numElements – 1)
thisProxy[thisIndex + 1].sayHi(thisIndex);

…

Prof. Aiken CS 315B Lecture 11 12

Hello World, Version 2
Main {

helloArray = Hello::cknew(numElements);
helloArray.sayHi(-1);

void done() {
if (++doneCount >= numElements) CkExit();

…
Hello {

void Hello::sayHi(int from) {
printf(“Hello from %d\n”, thisIndex);

mainProxy.done();
…

Prof. Aiken CS 315B Lecture 11 13

Chare Arrays vs. MPI

• Chare arrays provide an MPI-like model

• Message passing

• Collective operations
• E.g., reductions
• Global names for elements of the collection

Prof. Aiken CS 315B Lecture 11 14

Reductions

int myInt = 1;
contribute(sizeof(int), &myInt, CkReduction:sum_int);

• contribute is a built-in method on chare arrays
• All members of a chare array must call contribute
• contribute can also be used as a barrier:

contribute()

Prof. Aiken CS 315B Lecture 11 15

Comments on Control in Charm++

• Because message sends and receives are asynchronous, programs
tend to be written in an event-driven style
• Many entry point methods, each doing a small part of a larger task

• This leads to difficult-to-understand control flow
• Hard to reason about order in which different entry points are executed

Prof. Aiken CS 315B Lecture 11 16

Structured Dagger

• A mechanism for showing/enforcing intended order of entry point calls

chare ComputeObject {
entry void start() {

when first(T x)
when second(T y)
doPair(x,y)

}
}

entry void first(T i);
entry void second(T j);

}

Prof. Aiken CS 315B Lecture 11 17

Another Problem ...

• Charm++ is based on message passing in C++

• Most C++ things are objects

• So we’ll want to send objects in messages ...

Prof. Aiken CS 315B Lecture 11 18

PUP

• PUP = pack/unpack

• A serialization/deserialization framework
• One declaration of both

void T::pup(PUP::er &p) {
p|field1;
p|field2;
…

}

Prof. Aiken CS 315B Lecture 11 19

But …

• No in order message delivery

• All messages are one-sided
• Chare does not block on a message send

• Not limited to one array of chares

• Location of chares is transparent
• And can change (e.g., for load balancing)

Prof. Aiken CS 315B Lecture 11 20

Read Only Data

• Can declare read only data
• With global name, globally accessible

readonly Type ReadonlyVariable;

• readonly is really “write once”
• In main chare

• An important facility
• Underlying system makes sure read-only data is available everywhere

Prof. Aiken CS 315B Lecture 11 21

Load Balancing

• Because the location of a chare is kept abstract, it is possible to
migrate chares

• Charm++ has built-in load balancing
• Runtime moves chares
• Uses the chares’ PUP methods
• Many load balancing policies
• And users can write their own

Prof. Aiken CS 315B Lecture 11 22

Load Balancing (Cont.)

• To balance load, need chares > processors

• Called over partitioning
• Create more units of work than processors
• If one processor is too heavily loaded, move some of its units of work to a

lightly loaded processor

• Good if compute cost is linear in data size
• Not so good if compute cost is superlinear

Prof. Aiken CS 315B Lecture 11 23

Other Mapping Policies

• User can set policies for

• Initial assignment of chares to processors
• Migration of chares

• i.e., load balancing

• Locality
• Affinity of chares to each other

• Reminiscent of dynamic mapping decisions in Regent

Prof. Aiken CS 315B Lecture 11 24

Critique of Charm++

• Consider:

• Programmability

• Control model

• Data model

Prof. Aiken CS 315B Lecture 11 25

Programming

• Race conditions
• No shared memory, so no traditional races
• But easy to miss needed synchronization
• E.g., have all chares in a local stencil calculation contributed?

• Deadlocks
• Easy to get with out-of-order message handling

• Tradeoff
• Can improve performance by being more asynchronous
• But take the risk of introducing concurrency issues

Prof. Aiken CS 315B Lecture 11 26

Memory Management

• Programmer is responsible for managing message allocation &
deallocation

• No way for the runtime to know when a program is finished with a
message

• Programmer must manage all other memory explicitly as well
• Like MPI

Prof. Aiken CS 315B Lecture 11 27

Control

• Parallelism expressed at the level of chares
• One level of parallelism
• Well suited to clusters of sequential processors

• Ability to express hierarchy unclear
• Early versions of Charm++ had hierarchy
• Now in the “experts only” feature list

Prof. Aiken CS 315B Lecture 11 28

Data

• Minimal facilities for describing structure of data
• Chare arrays are the main mechanism
• Note they unify control & data decomposition

• No support for defining multiple views of data
• Can be done, but programmer must do it “by hand”, and system will not take advantage of it

• Support for locality in load balancing/scheduling policies
• But nothing higher level

Prof. Aiken CS 315B Lecture 11 29

Summary

• Charm++
• Minimalist view: Object-Oriented MPI
• But can do more

• Mature
• Well engineered – “just works”
• Many ports
• Good documentation
• Significant applications and libraries
• Some applications run on very large machines

Prof. Aiken CS 315B Lecture 11 30

