
Prof. Aiken CS 315B Lecture 12 1

Chapel & X10
CS315B

Lecture 12

What is Chapel?

“Chapel is a modern parallel programming language designed for productivity
at scale.”

Prof. Aiken CS 315B Lecture 12 2

What Does That Mean?

• Pay attention to the issues in large-scale parallel programming
• Control
• Memory

• But have features that look like a “real” programming language
• Types, type inference, objects, …

Prof. Aiken CS 315B Lecture 12 3

History

• Main paper in 2007
• Read the intro to this paper!

• Preceded by Cascade
• ~2004
• And by ZPL before that …

• Still an active project today

Prof. Aiken CS 315B Lecture 12 4

Model of Control

• In a word: threads

Prof. Aiken CS 315B Lecture 12 5

A Few Words About Threads

• A thread is a sequential program

• Multiple threads can execute in parallel
• All statements in a single thread execute in the specified order
• There is no specified ordering of instructions in different threads
• Instructions from different threads may be interleaved in any order

• And threads share state
• One thread can write a value another thread reads

Prof. Aiken CS 315B Lecture 12 6

Example 1

Thread 1

x = 0
y = 0
x = x + 1

Thread 2

x = 0
y = 0
y = y + 1

Prof. Aiken CS 315B Lecture 12 7

Example 2

Thread 1

x = 0
y = 0
x = y + 1

Thread 2

x = 0
y = 0
y = y + 1

Prof. Aiken CS 315B Lecture 12 8

Example 3

Thread 1
initially y = 0

y = y + 1

Thread 2

y = y + 1

Prof. Aiken CS 315B Lecture 12 9

Example 3: Machine Level

Thread 1
initially y = 0

r1 = load y
r1 = r1 + 1
y = store r1

Thread 2

r2 = load y
r2 = r2 + 1
y = store r2

Prof. Aiken CS 315B Lecture 12 10

Example 3: Atomics

Thread 1
initially y = 0

atomic{ y = y + 1 }

Thread 2

atomic{ y = y + 1 }

Prof. Aiken CS 315B Lecture 12 11

Thread Synchronization

• Threading systems often have a wide array of synchronization
primitives
• Ways to restrict the interleavings of threads

• General philosophy
• Allow any interleavings by default
• Add enough synchronization to eliminate undesirable interleavings

Prof. Aiken CS 315B Lecture 12 12

Data Parallelism in Chapel

• Index domains, both structured and unstructured

• Parallel for loops
forall i in I do …

• Legion/Regent use Chapel-style domains

Prof. Aiken CS 315B Lecture 12 13

Task Parallelism

• cobegin {s1; s2}

• Statements s1 and s2 may run in parallel

• Structured future-like variables for inter-thread communication
• Variables can be either full or empty
• A write fills the variable
• A read empties it
• Producer-consumer style parallelism

Prof. Aiken CS 315B Lecture 12 14

Nested Parallelism

• Constructs can be arbitrarily nested

• Fine to have
• Task parallelism inside of data parallelism
• Or vice versa

Prof. Aiken CS 315B Lecture 12 15

Reductions

• Built-in support for reductions and scans.

• Not integrated directly with other features
• Really a separate facility
• But can be used in combination with other kinds of parallelism

Prof. Aiken CS 315B Lecture 12 16

Locales

• Locales name places where computation can happen and values can
be stored

• Locales are an abstract concept
• In practice, a node would be a locale

• Note: The set of all locales is just … a set
• No structure
• No topological relationships between set elements
• Combines processors and memories in one

Prof. Aiken CS 315B Lecture 12 17

Data Model: Distributions

• A domain can be distributed among a set of locales

• Chapel supports standard distributions
• Blocked, cyclic, blocked cyclic
• And user-defined distributions

Prof. Aiken CS 315B Lecture 12 18

Alignment

• A new Chapel distribution can be defined as an alignment with an
existing distribution

• E.g., “Layout index set B like index set A”

• Allows distributions to be derived from existing distributions
• Compare with Legion/Regent’s dependent partitioning

Prof. Aiken CS 315B Lecture 12 19

Owner Computes

• Consider forall i in I do …

• Default execution uses the owner computes rule:
• Iteration i is executed on the locale that owns it

• Programmer can override:
forall i in I do on A[i+1] do …

Prof. Aiken CS 315B Lecture 12 20

User-Defined Distributions

• Additional distributions can be defined

• Implement distribution interface
• A lower-level API for defining distributions

• The standard distributions are also written this way
• But there is a difference in compiler knowledge!

Prof. Aiken CS 315B Lecture 12 21

Example

const indices = {1..1000} dmapped Cyclic(startIdx = 1)

forall i in indices do
writeln(“iteration “, i, “on locale ”, here.id)

Prof. Aiken CS 315B Lecture 12 22

Object-Oriented Features

• Chapel strives to look and feel like a modern object-oriented language
• E.g., Java

• But not fully OO
• Emphasis on arrays and pass-by-value
• Because of importance in high-performance computing

Prof. Aiken CS 315B Lecture 12 23

Chapel Critique

• Machine Model

• Memory/Data

• Control

• Latency hiding

Prof. Aiken CS 315B Lecture 12 24

Machine Model

• Designed for a world of clusters

• Locales are essentially a flat collection
• Fine if the locales are nodes that are peers on a network
• Reality is now more complex due to accelerators and other heterogeneity

within a node
• e.g., NUMA

Prof. Aiken CS 315B Lecture 12 25

Memory/Data Model

• Model of machine memory is very simple

• Unified with computation
• No mechanism for talking about different memories accessible from the same

processor
• No mechanism for talking about hierarchy

Prof. Aiken CS 315B Lecture 12 26

Data Model

• Lots of support for manipulating, partitioning index spaces
• A good idea, widely adopted
• Can also define and use subspaces
• Sparse index space support is not fully worked out

• Note: The index space itself is mapped, not the data
• Allows multiple arrays with the same index space to be trivially partitioned

the same way

Prof. Aiken CS 315B Lecture 12 27

Data Model (Cont.)

• Emphasis on where the data is placed
• And can only have one placement

• No (?) facilities for expressing movement of data
• Data movement is implicit, in that if a thread on a locale needs a value from

another locale the needed messages are generated automatically
• Data movement at the granularity of individual requests

Prof. Aiken CS 315B Lecture 12 28

Control

• Locales are virtualized processors
• And memories

• Fine to have multiple threads per processor
• No guarantee of exclusive access

• Ability to run multiple threads/locale is also the latency hiding mechanism

• Various synchronization mechanisms we didn’t discuss
• Present in all threading models

Prof. Aiken CS 315B Lecture 12 29

X10

• Surprisingly similar to Chapel!

• Not really fair …
• There are real differences in the designs
• But not so much at the level of today’s lecture

• X10 is
• Thread-based
• Provides data parallel and task parallel constructs
• Has a flat model of compute/memory locations called places

Prof. Aiken CS 315B Lecture 12 30

X10: What’s Different

• Java-based
• More emphasis on integration into an existing language
• More emphasis on being object-oriented

• Garbage-collected
• A huge difference
• Only serious HPC effort that uses GC
• Every local JVM collects its own heap on a node
• Make sure inter-node references are tracked

• So that data pointed to on remote nodes isn’t collected!

Prof. Aiken CS 315B Lecture 12 31

