
Prof. Aiken CS 315B Lecture 15 1

Wrap-Up
CS315B

Lecture 15

Topics

• Presentations

• Key Ideas

• Predictions

Prof. Aiken CS 315B Lecture 15 2

Presentations

Prof. Aiken CS 315B Lecture 15 3

Your Presentation Should Include
• Brief problem description

• Enough for everyone to understand what the computation does

• Parallelization strategy
• What are the tasks and what are the dependencies?

• Mapping strategy
• Where did you put tasks and data?
• If different from the default mapper

• Issues

• Performance results
• Graphs up and to the right!
• Profiles
• Comparisons with reasonable baselines if possible

Prof. Aiken CS 315B Lecture 15 4

Your Presentation Should Not Include

• Disproportionate discussion of related work
• Some context is good, of course

• Gory details
• Don’t need to see your command line flags

Remember: You have 15 minutes

Prof. Aiken CS 315B Lecture 15 5

What is Due?

• Your slide deck
• Updated with any new results since your presentation

• Your code

Prof. Aiken CS 315B Lecture 15 6

Key Ideas:
Parallel Programming

Prof. Aiken CS 315B Lecture 15 7

Amdahl’s Law

1
Speedup =

(1 – p) + (p / s)

where
p = portion of the program sped up
s = factor improvement of that portion

Prof. Aiken CS 315B Lecture 15 8

Parallelism: Speed vs. # of Processors for
Different Values of p

Prof. Aiken CS 315B Lecture 15 9

Examples

• What are some examples of Amdahl’s Law?

• Bonus: Have you come across an instance yourself?

Prof. Aiken CS 315B Lecture 15 10

Locality

• Machines are hierarchically constructed
• Small and fast at finest scale
• Big and slow at coarsest scale
• Each level is at least 10X

• Locality matters
• Data and associated compute should be co-located
• Not a small effect

Prof. Aiken CS 315B Lecture 15 11

Locality: Examples

• What are some computations/algorithms with good or bad locality?

Prof. Aiken CS 315B Lecture 15 12

Overhead

• Overhead = anything that isn’t application code

• Any system overheads limit scalability

Prof. Aiken CS 315B Lecture 15 13

Weak and Strong Scaling

• Weak scaling
• Increase problem size with node count

• Problem size per node is constant
• Characterizes communication behavior

• Strong scaling
• Problem size is fixed
• Tests minimum granularity & communication

Prof. Aiken CS 315B Lecture 15 14

Surface Area to Volume

• A partitioning into N pieces is better if it requires less communication

• For stencils, communication is proportional to the surface area of a
piece

• The volume of a piece represents the total work in that piece

Prof. Aiken CS 315B Lecture 15 15

Metaprogramming

• Not specifically for parallelism
• Or even for performance

• Just a useful idea
• That is not as well known as it should be

Prof. Aiken CS 315B Lecture 15 16

Key Ideas: Tasking

Prof. Aiken CS 315B Lecture 15 17

Task-Based Programming

• Tasks = parallel functions

• Collection arguments

• Program is a directed acyclic graph of tasks
• Edges indicate ordering relationships
• Can program graphs directly
• Or write a program to generate graphs

Prof. Aiken CS 315B Lecture 15 18

Mapping

• Selecting
• Where tasks run
• Where data is placed

• Very important to performance
• Significant improvements/penalties possible

Prof. Aiken CS 315B Lecture 15 19

Partitioning

• To distribute data, it must be partitioned

• Two issues
• How partitions are named
• What partitioning operators are available

• Overpartitioning

• Underexplored aspect of parallel programming

Prof. Aiken CS 315B Lecture 15 20

The Argument

• Tasking is compositional
• Natural to compose programs/libraries that use tasks
• Runtime can extract parallelism across abstraction boundaries

• Mapping is fundamentally not compositional
• Adding a component may change the mapping for the whole program
• A resource optimization problem

Prof. Aiken CS 315B Lecture 15 21

Predictions

Prof. Aiken CS 315B Lecture 15 22

Hardware

• Hardware drives the programming model

• Trends
• More specialized accelerators
• More reconfigurable processors
• Decreasing (or not increasing) memory/thread

• Implication
• Data movement and placement will be key

Prof. Aiken CS 315B Lecture 15 23

Applications

• Who will be the programmers?

• Options
• Traditional HPC
• Data analytics

• Likely data analysis >> HPC
• Even within traditional HPC communities

Prof. Aiken CS 315B Lecture 15 24

Programming Systems

• MPI, OpenMP, CUDA are here to stay
• Nothing goes away
• E.g., Fortran

• One or two tasking systems will survive
• And likely succeed
• Building on top of MPI, OpenMP, CUDA

Prof. Aiken CS 315B Lecture 15 25

Why?

• Compositionality
• Clear composition model
• Clear mechanism for optimizing whole programs

• Scheduling ahead
• Mapping

Prof. Aiken CS 315B Lecture 15 26

Cloud vs. Supercomputer

• For small/short projects, the cloud will rule
• Removes fixed overheads of obtaining and running machines

• For large/long projects, less clear
• Compute intensive applications can be competitive in the cloud
• Data intensive applications tend to be too expensive
• If a project is large enough, it will benefit from its own hardware resources

Prof. Aiken CS 315B Lecture 15 27

Open Questions for Tasking Systems

• How well will composing task systems really work?
• Few actual demonstrations as yet

• How important is resilience?

• Can mapping be automated?

• Can partitioning be automated?

• How low can the overheads be?

• Others?

Prof. Aiken CS 315B Lecture 15 28

