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Design Goals

e Sequential semantics
* The better to understand what you write
* Parallelism is extracted automatically

* Throughput-oriented
* The latency of a single thread/process is (mostly) irrelevant
* The overall time is what matters

* Runtime decision making
* Because machines are unpredictable/dynamic



Throughput-Oriented

* Keep the machine busy

* How? Ideally,

* Every core has a queue of independent work to do

* Every memory unit has a queue of transfers to do
e At all times

* C.f., bulk-synchronous model



Consequences

* Highly asynchronous
* Minimize synchronization
* Esp. global synchronization

* Sequential semantics but support for parallelism

* Emphasis on describing the structure of data
* Next lecture



Regent Stack

Lua
Host language

Prof. Aiken CS 315B Lecture 5



Examples 0 & 1

* Embedded in Lua

* Popular scripting language in the graphics community

* Excellent interoperation with C
* And with other languages

* Python-ish syntax
* For both Lua and Regent



Tasks

* Tasks are Regent’s unit of parallel execution
* Distinguished functions that can be executed asynchronously

* No preemption
e Tasks will run until they block or terminate
* And ideally they don’t block ...



Examples 2 & 3

e Tasks can call subtasks

* Nested parallelism
* To arbitrary depth

* Terminology: parent and child tasks

If a parent task inspects the result of a child task, the parent task blocks pending
completion of the child task.



Blocking

* Blocking means a task cannot continue
* So the task stops running

* Blocking does not prevent independent work from being done
* If the processor has something else to do

e But it does prevent the thread from continuing and launching more
tasks



Examples 4 & 5
e “for all” style parallelism

* Note the order of completion of the tasks
* main() finishes first (or almost first)!
* All subtasks managed by the runtime system
* Subtasks execute in non-deterministic order

* How?
* Regent notices that the tasks are independent
* In 4, no task depends on another task for its inputs
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Runtime Dependence Analysis

 Example 5 is more involved
* Positive tasks (print a positive integer)
* Negative tasks (print a negative integer)

* Some tasks are dependent
* The task for -5 depends on the task for 5
* Note loop in main() does not block on the value of |!

 Some are independent
* Positive tasks are independent of each other
* Negative tasks are independent of each other
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Computing the Area of a Unit Circle

* A Monte Carlo simulation to compute
the area of a unit circle inscribed in a
square

e Throw darts

* Fraction of darts landing in the circle = *
ratio of circle’s area to square’s area
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Computing the Area of a Unit Circle

* Example 6

e Slow!
* Why?

* Example 7
* Faster!
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Leaf Tasks

* Leaf tasks call no other tasks
* The “leaves” of the task tree

* Leaf tasks are sequential programs
* And generally where the heavy compute will be

* Thus, leaf tasks should be optimized for latency, not throughput
* Want them to finish as fast as possible!
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Terra
* Terra is a low-level, typed language embedded in Lua

* Designed to be like C

* And to compile to similarly efficient code

* Also supports vector intrinsics
* Not illustrated today

* Example 8
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Considerations in Writing Regent Programs

* The granularity of tasks must be sufficient
* Don’t write very short running tasks

* Don’t block in tasks that launch many subtasks

* Regent’s code generator is pretty good
* As good as Terra for almost everything
* But if you need extra leaf task performance, Terra is an option
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Profiling

* |s the performance any good?
* You need to profile the code to find out

e Learn to use legion_prof
* And use it early!

* Example 8 again ...
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Making Improvements

* If you don’t like the profile, what can you do?

* Change the program
* Remove dependencies that cause control tasks to block
* Improve slow leaf tasks

* Next time
* Improve memory/communication use
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Mapping

Mapping is
* The assignment of tasks to cores
* The assignment of data to memories
* ...and many other policy decisions ...

Mapping is under programmer control
 Completely programmable

Programs use the default mapper if no other mapper is supplied.

More on mapping next week ...
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