Regent: Tasks

CS315B

Lecture 5

Prof. Aiken CS 315B Lecture 5



Design Goals

e Sequential semantics
* The better to understand what you write
* Parallelism is extracted automatically

* Throughput-oriented
* The latency of a single thread/process is (mostly) irrelevant
* The overall time is what matters

* Runtime decision making
* Because machines are unpredictable/dynamic



Throughput-Oriented

* Keep the machine busy

* How? Ideally,

* Every core has a queue of independent work to do

* Every memory unit has a queue of transfers to do
e At all times

* C.f., bulk-synchronous model



Consequences

* Highly asynchronous
* Minimize synchronization
* Esp. global synchronization

* Sequential semantics but support for parallelism

* Emphasis on describing the structure of data
* Next lecture



Regent Stack

Lua
Host language

Prof. Aiken CS 315B Lecture 5



Examples 0 & 1

* Embedded in Lua

* Popular scripting language in the graphics community

* Excellent interoperation with C
* And with other languages

* Python-ish syntax
* For both Lua and Regent



Tasks

* Tasks are Regent’s unit of parallel execution
* Distinguished functions that can be executed asynchronously

* No preemption
e Tasks will run until they block or terminate
* And ideally they don’t block ...



Examples 2 & 3

e Tasks can call subtasks

* Nested parallelism
* To arbitrary depth

* Terminology: parent and child tasks

If a parent task inspects the result of a child task, the parent task blocks pending
completion of the child task.



Blocking

* Blocking means a task cannot continue
* So the task stops running

* Blocking does not prevent independent work from being done
* If the processor has something else to do

e But it does prevent the thread from continuing and launching more
tasks



Examples 4 & 5
e “for all” style parallelism

* Note the order of completion of the tasks
* main() finishes first (or almost first)!
* All subtasks managed by the runtime system
* Subtasks execute in non-deterministic order

* How?
* Regent notices that the tasks are independent
* In 4, no task depends on another task for its inputs

10



Runtime Dependence Analysis

 Example 5 is more involved
* Positive tasks (print a positive integer)
* Negative tasks (print a negative integer)

* Some tasks are dependent
* The task for -5 depends on the task for 5
* Note loop in main() does not block on the value of |!

 Some are independent
* Positive tasks are independent of each other
* Negative tasks are independent of each other

11



Computing the Area of a Unit Circle

* A Monte Carlo simulation to compute
the area of a unit circle inscribed in a
square

e Throw darts

* Fraction of darts landing in the circle = *
ratio of circle’s area to square’s area

Prof. Aiken CS 315B Lecture 5

12



Computing the Area of a Unit Circle

* Example 6

e Slow!
* Why?

* Example 7
* Faster!

13



Leaf Tasks

* Leaf tasks call no other tasks
* The “leaves” of the task tree

* Leaf tasks are sequential programs
* And generally where the heavy compute will be

* Thus, leaf tasks should be optimized for latency, not throughput
* Want them to finish as fast as possible!

14



Terra
* Terra is a low-level, typed language embedded in Lua

* Designed to be like C

* And to compile to similarly efficient code

* Also supports vector intrinsics
* Not illustrated today

* Example 8

15



Considerations in Writing Regent Programs

* The granularity of tasks must be sufficient
* Don’t write very short running tasks

* Don’t block in tasks that launch many subtasks

* Regent’s code generator is pretty good
* As good as Terra for almost everything
* But if you need extra leaf task performance, Terra is an option

16



Profiling

* |s the performance any good?
* You need to profile the code to find out

e Learn to use legion_prof
* And use it early!

* Example 8 again ...

17



Making Improvements

* If you don’t like the profile, what can you do?

* Change the program
* Remove dependencies that cause control tasks to block
* Improve slow leaf tasks

* Next time
* Improve memory/communication use

18



Mapping

Mapping is
* The assignment of tasks to cores
* The assignment of data to memories
* ...and many other policy decisions ...

Mapping is under programmer control
 Completely programmable

Programs use the default mapper if no other mapper is supplied.

More on mapping next week ...

19



