
Prof. Aiken CS 315B Lecture 9 1

Metaprogramming
CS315B

Lecture 9

Projects

• Time to start thinking about projects!
• Project proposal assignment is out today
• A Regent or cuNumeric program/library of your choosing

• Working in teams is OK
• But then it should be a more ambitious project!

Prof. Aiken CS 315B Lecture 9 2

What is Metaprogramming?

• Programs that generate programs

• Example: C++ template metaprogramming

• But a very old idea
• Lisp in the 1950’s
• Explored extensively since the 1980’s

Prof. Aiken CS 315B Lecture 9 3

Why Metaprogramming?

• Reason #1: Performance

• Consider a function F(X,Y)
• X changes with every call
• Y is one of a small set of possible values
• Or fixed for long periods of time

• Generate versions FY(X) for each value of Y
• And optimize each FY(.) separately

Prof. Aiken CS 315B Lecture 9 4

Why Metaprogramming?

• Reason #2: Software maintenance

• Maintaining versions FY(X) for each value of Y by hand is painful

• Much easier to maintain a program that auto-generates the needed
versions

Prof. Aiken CS 315B Lecture 9 5

Why Metaprogramming?

• Reason #3: Autotuning
• Based on performance measurements, generate a new version of F(X)
• Here, machine characteristics are a “hidden”, constant parameter

• May need to generate many versions F(X)
• Which versions and how many are data dependent
• The space of possible versions could be very large or even infinite

Prof. Aiken CS 315B Lecture 9 6

Templates using Metaprogramming

• Templates are an instance of metaprogramming
• Each template argument produces a distinct set of methods, customized to a

particular type

• Lua can be used to generate Terra structs and methods
• Example 32

Prof. Aiken CS 315B Lecture 9 7

Why Does this Work?

• Lua and Terra (and Regent) share a lexical environment
• Lua variables can be referred to in Terra & Regent

• Terra types are Lua values
• E.g., Array(float)

• In this example, can only have one ArrayType
• The name can’t be redefined
• Can also generate new names (not shown)

Prof. Aiken CS 315B Lecture 9 8

Escape

• Lua can also be used to compute Terra code
• Expressions or statements

• The escape operator [e] inserts the value of the Lua expression e
into a Terra context
• e is Lua code
• That evaluates to a Terra expression

• Example 33 & 34

Prof. Aiken CS 315B Lecture 9 9

Warning! Warning!

• Metaprogramming is tricky

• It is easy to
• Not get the code you expect
• Perform illegal operations

• E.g., adding two pieces of code, instead of two numbers

• Separate
• Function definition time
• Function call time

• Metaprogramming takes place at definition time

Prof. Aiken CS 315B Lecture 9 10

Guideline 1

• An escape operation […] should contain
• A call to a Lua function
• An explicit quote `...
• Not strictly necessary, but these are the common cases

Prof. Aiken CS 315B Lecture 9 11

Guideline 2

• To do metaprogramming, you will need both values and code at
function-definition time
• The values may appear in the final code
• Or be used for computing the code

• Values that you use in metaprogramming
• Must be defined at the Lua level
• Outside of any Terra functions or Regent tasks
• Examples 35-38

Prof. Aiken CS 315B Lecture 9 12

Metaprogramming in Regent

• Regent metaprogramming is similar to Terra

• Escape is still […]

• Quote is rexpr ... end

• Example 39
• New feature: A Lua function that returns a Regent task

Prof. Aiken CS 315B Lecture 9 13

Stencil_fast.rg

• A sophisticated example of Regent metaprogramming

Prof. Aiken CS 315B Lecture 9 14

Semantics

• It is worth understanding in some detail the semantics of
metaprogramming in Lua/Terra/Regent.

• There are a number of steps …

Prof. Aiken CS 315B Lecture 9 15

Semantics

• Step 1: Lua code evaluates normally until it reaches
• a Terra/Regent function definition
• A quote expression

Prof. Aiken CS 315B Lecture 9 16

Semantics

• Step 1: Lua code evaluates normally until it reaches a Terra/Regent
definition or a quote

• Step 2: A Terra/Regent expression is specialized in the local
environment, by evaluating all escaped Lua expressions

Prof. Aiken CS 315B Lecture 9 17

Semantics

• Step 1: Lua code evaluates normally until it reaches a Terra/Regent
definition or a quote

• Step 2: A (Terra/Regent) quote is simply returned as code
• Internally, a code data type

Prof. Aiken CS 315B Lecture 9 18

Semantics

• Step 1: Lua code evaluates normally until it reaches a Terra/Regent
definition or a quote

• Step 2: The Terra/Regent expression is specialized in the local
environment, by evaluating all escaped Lua expressions

• Step 3: When a Terra/Regent function is called, it is JIT compiled and
returns a Terra/Regent code value.

Prof. Aiken CS 315B Lecture 9 19

Back To Step 2

• Step 2: The Terra/Regent expression is specialized in the local
environment, by evaluating all escaped Lua expressions

• In this step, Lua/Terra/Regent share the same lexical environment
• Escaped Lua expressions are evaluated
• Lua variable references are replaced by their values

• Must be coercable to a Terra/Regent value!

Prof. Aiken CS 315B Lecture 9 20

Back To Step 3

• Step 3: When a Terra/Regent function is called, it is JIT compiled and
returns a Terra/Regent code value.

• Terra/Regent execute in a separate environment
• All variable references are to Terra/Regent values
• Can still call Lua functions, though!

• Be careful
• Will call into the local Lua interpreter on the node

Prof. Aiken CS 315B Lecture 9 21

Critique of Metaprogramming

• Most metaprogramming systems are designed to use language X to program in language X
• Lisp
• Scheme
• MetaOCaml

• Plus
• Expressive languages, easy to manipulate code programmatically

• Minus
• Limits the performance that can be obtained
• Because the languages are (usually) untyped, high-level, garbage-collected

Prof. Aiken CS 315B Lecture 9 22

Other Approaches

• Other approaches involve metaprogramming in lower-level languages through a
variety of mechanisms
• Template metaprogramming (C++)
• Preprocessors (C)
• Printf and recompile (C)

• Plus
• Code can be as fast as possible

• Minus
• Bizarre restrictions, cumbersome to use, not completely general

Prof. Aiken CS 315B Lecture 9 23

Metaprogramming with Lua/Terra/Regent

• Use a high-level language to metaprogram lower-level languages

• Plus
• Generality, expressivity & performance
• Key is shared lexical scope

• Minus
• Need to understand two/three languages
• Need to understand evaluation semantics

Prof. Aiken CS 315B Lecture 9 24

Lua/Terra for ATLAS

• ATLAS provides autotuned matrix multiply routines
• Combination of X86 asm, C, C-preprocessor, Makefiles, custom scripts

• Terra version
• Staged (metaprogrammed) Terra code
• Autotuning written in Lua

• Selecting optimal subproblem sizes for a machine
• Optimizations: vectorization vector(float,4), register blocking, cache blocking, unrolling
• Total code is ~250 lines

Prof. Aiken CS 315B Lecture 9 25

ATLAS Results

Prof. Aiken CS 315B Lecture 9 26

Metaprogramming/Autotuning Regent

• Tune size/number of regions

• Tune depth of region tree
• How many levels of decomposition is best?

• Specialize code to individual subregions
• E.g., boundary vs. interior
• E.g., repetitive sparse patterns

• Perform optimizations
• But note the Regent compiler does some optimizations already

Prof. Aiken CS 315B Lecture 9 27

Summary

• Metaprogramming is a very powerful tool
• You can program your own compiler functionality

• Not as exploited as it should be
• And Lua/Terra/Regent makes it easier to use

• Give it a try!

Prof. Aiken CS 315B Lecture 9 28

