Regent: More on Regions

CS315B

Lecture 7

Prof. Aiken CS 315B Lecture 7

Regions Review

* Aregionis a (typed) collection

* Regions are the cross product of
* An index space
* Afield space

* So far we’ve seen regions with N-dim index spaces
e E.g., intld, int2d, int3d

Example 19

Nodes

1d

Ssource

dest

Edges

Equal Partitioning

e Recall: There is a simple way to partition a region into chunks of
(approximately) equal size

* Example 20

Partitioning By Field
* A field can be used as a coloring

* Write elements of the color space into the field
e Using an arbitrary computation

* Then call partition(region.f, colors)
* Example 27

Partitioning, Digression

* Why do we want to partition data?
* For parallelism
* We will launch many tasks over many subregions

* A problem
* We often need to partition multiple data structures in a consistent way

* E.g., given that we have partitioned the nodes a particular way, that will
dictate the desired partitioning of the edges

Dependent Partitioning

* Distinguish two kinds of partitions

* Independent partitions

 Computed from the parent region, using, e.g.,
» partition(equals, ...)
» partition(region.field, ...)

* Dependent partitions
* Computed using another partition

Dependent Partitioning Operations

* Image
* Use the image of a field in a partition to define a new partition

* Preimage
* Use the preimage of a field in a partition

* Set operations

* Form new partitions using the intersection, union, and set difference of other
partitions

Image

* Computes elements reachable via a
field lookup

* Equivalent to semi-join in relational
algebra

* Can be applied to index space or
another partition

 Computation is distributed based on
location of data

* Regent understands relationship
between partitions

* Can check safety of region relation
assertions at compile time IS 1S,

> '_L'

S1 Sy S3 $1 s S3

Prof. Aiken CS 315B Lecture 7

Preimage

* Opposite of image — computes
elements that reach a given
subspace

* Preserves disjointness

e Multiple images/preimages can
be combined

* can capture complex task access
patterns

* Limitation: no transitive
reachability

Prof. Aiken CS 315B Lecture 7

10

Example 21

e Partition the nodes
* Equal partitioning

* Then partition the edges
* Preimage of the source node of each edge

* For each node subregion r, form a subregion of those edges where
the source nodeisinr

11

Example 22

 Partition the edges
* Equal partitioning

* Then partition the nodes
* Image of the source node of each edge

* For each edge subregion r, form a subregion of those nodes that are
source nodesinr

12

Discussion

* Note that these two examples compute almost the same partition

e Can derive the node partition from the edges, or vice versa

13

Example 23

* What would the example look like if we partitioned based on the
destination node?

e Let’s find out ...

14

Set Operations: Set Difference

 Partition the edges
e Equal partition

 Compute the source and destination node partitions of the previous
two examples

* The final node partition is the set difference
 What does this compute?
* Examples 23 - 25

15

Set Operations: Set Intersection

 Partition the edges
e Equal partition

* Compute the source & destination node partitions

* Final node partition is the intersection
 What does this compute?
* Example 26

16

Example 28

* Same as the last example

* Once the final node partition is computed, compute a partition of the
edges such that each edge subregion has only the edges connecting
the nodes in the corresponding node subregion

17

Examples 29

* Pointers point into a particular region
* And this is part of the pointer’s type

* Partitioning can change which region(s) a pointer points to

* May lead to typechecking issues, depending on which region you want to use
for an operation

18

Example 30

* The right way to fix type issues is to use type casts

* Very analogous to downcasting from a more general object type to a
more specific object type in an object-oriented language

e But, this solution does not work!
e Casting of region types is not implemented

19

Example 31

* The fix/workaround is to use wild in field space arguments when
allocating regions

* Wild effectively turns off typechecking for those region arguments.

20

Backing Up ...

* Regent’s partitioning mechanisms are very different from other
languages

 What do those other languages provide?

21

One Extreme: Simplicity

* PGAS languages (e.g. X10, UPC, Chapel) generally provide only simple
array-based distribution methods

* e.g. block, cyclic, blockcyclic

* Pros:
* simple for programmer to describe
e simple for compiler to verify consistency
* simple for runtime to implement

* Cons:
* no support for irregular (or even semi-regular) data structures
* no support for irregular partitions of structured data
* no support for aliased or multiple partitions

22

Other Extreme: Expressivity

* Initial Legion partitioning used general-purpose coloring object for ALL
partitioning operations

* Application able to color each element any way it wants

* Pros:
* support for arbitrary irregularity in data and/or partitioning
* support for aliased partitions, multiple partitions

* Cons:
 significant programmer effort to describe even simple partitions
* no ability for compiler to check that related regions are partitioned consistently
* high runtime overhead for computing and querying partitions
* manipulation of coloring was serial, limited to single node

23

Dependent Partitioning

A carefully chosen middle ground between these two extremes
Supports both structured and unstructured domains

Allows arbitrary independent partitions to be computed by the application
* But uses field data to capture intent rather than a coloring
* Index-based partitions cover PGAS-like simple cases

Provides an analyzable set of operations to compute dependent partitions from other partitions
» Based on reachability and/or set operations
* Consistency of dependent partitions can be verified at compile time

And can be executed in parallel

24

Programmer Productivity

* Lines of code for computation of dependent partitions in Regent
applications:

Dependent

Original Partitioning
Application LOC LOC Reduction
PENNANT 163 6 96%
Circuit 159 8 95%
MiniAero 51 7 86%

* Not a perfect metric
* Take with however much salt you like...

Summary

* The built-in partitioning operations are
* Expressive
* Can execute in parallel
* Can be analyzed by the Regent implementation

* Except for explicit coloring objects
* Inherently not parallel

26

