
Prof. Aiken CS 315B Lecture 7 1

Regent: More on Regions
CS315B

Lecture 7

Regions Review

• A region is a (typed) collection

• Regions are the cross product of
• An index space
• A field space

• So far we’ve seen regions with N-dim index spaces
• E.g., int1d, int2d, int3d

Prof. Aiken CS 315B Lecture 7 2

Example 19

Prof. Aiken CS 315B Lecture 7 3

0

1

2

3

4

5

6

7

8

9

Nodes Edges

source destid

Equal Partitioning

• Recall: There is a simple way to partition a region into chunks of
(approximately) equal size

• Example 20

Prof. Aiken CS 315B Lecture 7 4

Partitioning By Field

• A field can be used as a coloring

• Write elements of the color space into the field f
• Using an arbitrary computation

• Then call partition(region.f, colors)
• Example 27

Prof. Aiken CS 315B Lecture 7 5

Partitioning, Digression

• Why do we want to partition data?
• For parallelism
• We will launch many tasks over many subregions

• A problem
• We often need to partition multiple data structures in a consistent way
• E.g., given that we have partitioned the nodes a particular way, that will

dictate the desired partitioning of the edges

Prof. Aiken CS 315B Lecture 7 6

Dependent Partitioning

• Distinguish two kinds of partitions

• Independent partitions
• Computed from the parent region, using, e.g.,

• partition(equals, …)
• partition(region.field, ...)

• Dependent partitions
• Computed using another partition

Prof. Aiken CS 315B Lecture 7 7

Dependent Partitioning Operations

• Image
• Use the image of a field in a partition to define a new partition

• Preimage
• Use the preimage of a field in a partition

• Set operations
• Form new partitions using the intersection, union, and set difference of other

partitions

Prof. Aiken CS 315B Lecture 7 8

Image
• Computes elements reachable via a

field lookup
• Equivalent to semi-join in relational

algebra
• Can be applied to index space or

another partition
• Computation is distributed based on

location of data

• Regent understands relationship
between partitions
• Can check safety of region relation

assertions at compile time IS1

s1 s2 s3

IS1 IS2

IS2

s1 s2 s3

LR1

Prof. Aiken CS 315B Lecture 7 9

Preimage
• Opposite of image – computes

elements that reach a given
subspace
• Preserves disjointness

• Multiple images/preimages can
be combined
• can capture complex task access

patterns
• Limitation: no transitive

reachability
IS1

s1 s2 s3

IS1 IS2

IS2

s1 s2 s3

LR1

Prof. Aiken CS 315B Lecture 7 10

Example 21

• Partition the nodes
• Equal partitioning

• Then partition the edges
• Preimage of the source node of each edge

• For each node subregion r, form a subregion of those edges where
the source node is in r

Prof. Aiken CS 315B Lecture 7 11

Example 22

• Partition the edges
• Equal partitioning

• Then partition the nodes
• Image of the source node of each edge

• For each edge subregion r, form a subregion of those nodes that are
source nodes in r

Prof. Aiken CS 315B Lecture 7 12

Discussion

• Note that these two examples compute almost the same partition

• Can derive the node partition from the edges, or vice versa

Prof. Aiken CS 315B Lecture 7 13

Example 23

• What would the example look like if we partitioned based on the
destination node?

• Let’s find out …

Prof. Aiken CS 315B Lecture 7 14

Set Operations: Set Difference

• Partition the edges
• Equal partition

• Compute the source and destination node partitions of the previous
two examples

• The final node partition is the set difference
• What does this compute?
• Examples 23 - 25

Prof. Aiken CS 315B Lecture 7 15

Set Operations: Set Intersection

• Partition the edges
• Equal partition

• Compute the source & destination node partitions

• Final node partition is the intersection
• What does this compute?
• Example 26

Prof. Aiken CS 315B Lecture 7 16

Example 28

• Same as the last example

• Once the final node partition is computed, compute a partition of the
edges such that each edge subregion has only the edges connecting
the nodes in the corresponding node subregion

Prof. Aiken CS 315B Lecture 7 17

Examples 29

• Pointers point into a particular region
• And this is part of the pointer’s type

• Partitioning can change which region(s) a pointer points to
• May lead to typechecking issues, depending on which region you want to use

for an operation

Prof. Aiken CS 315B Lecture 7 18

Example 30

• The right way to fix type issues is to use type casts

• Very analogous to downcasting from a more general object type to a
more specific object type in an object-oriented language

• But, this solution does not work!
• Casting of region types is not implemented

Prof. Aiken CS 315B Lecture 7 19

Example 31

• The fix/workaround is to use wild in field space arguments when
allocating regions

• Wild effectively turns off typechecking for those region arguments.

Prof. Aiken CS 315B Lecture 7 20

Backing Up …

• Regent’s partitioning mechanisms are very different from other
languages

• What do those other languages provide?

Prof. Aiken CS 315B Lecture 7 21

One Extreme: Simplicity

• PGAS languages (e.g. X10, UPC, Chapel) generally provide only simple
array-based distribution methods
• e.g. block, cyclic, blockcyclic

• Pros:
• simple for programmer to describe
• simple for compiler to verify consistency
• simple for runtime to implement

• Cons:
• no support for irregular (or even semi-regular) data structures
• no support for irregular partitions of structured data
• no support for aliased or multiple partitions

Prof. Aiken CS 315B Lecture 7 22

Other Extreme: Expressivity

• Initial Legion partitioning used general-purpose coloring object for ALL
partitioning operations
• Application able to color each element any way it wants

• Pros:
• support for arbitrary irregularity in data and/or partitioning
• support for aliased partitions, multiple partitions

• Cons:
• significant programmer effort to describe even simple partitions
• no ability for compiler to check that related regions are partitioned consistently
• high runtime overhead for computing and querying partitions
• manipulation of coloring was serial, limited to single node

Prof. Aiken CS 315B Lecture 7 23

Dependent Partitioning

• A carefully chosen middle ground between these two extremes

• Supports both structured and unstructured domains

• Allows arbitrary independent partitions to be computed by the application
• But uses field data to capture intent rather than a coloring
• Index-based partitions cover PGAS-like simple cases

• Provides an analyzable set of operations to compute dependent partitions from other partitions
• Based on reachability and/or set operations
• Consistency of dependent partitions can be verified at compile time

• And can be executed in parallel

Prof. Aiken CS 315B Lecture 7 24

Programmer Productivity

• Lines of code for computation of dependent partitions in Regent
applications:

• Not a perfect metric
• Take with however much salt you like...

Dependent

Original Partitioning

Application LOC LOC Reduction

PENNANT 163 6 96%
Circuit 159 8 95%
MiniAero 51 7 86%

Figure 10: Reduction in code required to compute partitions

is only performed O(M) times, and the complexity for the
whole operation is O(NlogN + M) as well.

A similar optimization is used for preimages, with the
complication that we cannot directly intersect the instance
domains Dj with the targets Ti in:

Ii =
[

j

P \ f j (Ti)

Instead, we compute Rj = f
!(P) and use the identity:

A \ f (B) = A \ f (f!(A) \B)

to yield:
Ii =

[

j

P \ f j (Rj \ Ti)

and again perform approximate intersection tests. Noting
that the intermediate Rj’s will be discarded after this opera-
tion, we can save more time and memory by only computing
an approximate image fRj = gf!

j (P) in which bitmasks are
never generated and intervals are merged during the compu-
tation. Our final form again requires O(NlogN + M) work
to compute N preimages:

Ii =
[

j, fRj\fTi 6=;

P \ f j (fRj \ Ti)

6. Evaluation

In addition to the qualitative benefits of catching many
partitioning-related problems at compile time, our depen-
dent partitioning framework provides quantitative improve-
ments to both programmer productivity and application per-
formance. To assess these benefits, we look at three appli-
cations that have been written and tuned for Regent. Two
of these applications are the circuit simulation and PEN-
NANT, which were discussed briefly in Sections 1 and 2.
The third application is MiniAero, part of the Mantevo[2]
project, which performs simulation of fluid dynamics in an
unstructured 3-D mesh. Although all three applications per-
form computations on an unstructured graph or mesh, there
are differences in how “unstructured” they are. Both PEN-
NANT and MiniAero use a spatial decomposition to derive
their independent partition, resulting in a nearest-neighbor
communication pattern between the partitions. In contrast,
the circuit example uses a randomized graph that has an
all-pairs communication pattern between the partitions.

We rewrote the partitioning code of each application to
use the new dependent partitioning operations in Regent that

Figure 11: Partitioning time improvement on a single node

we described in Section 4. The effort took only minutes, and
involved deleting nearly all of the code that was generating
colorings for the old partition operation, and instead us-
ing images, preimages and set operations to achieve the same
effect. This time also includes the time that was necessary to
run the static analysis described in Section 3 and find two
bugs in the newly written code, including the need to “filter”
the PENNANT mesh as described in Section 2.2. Since there
were no changes to the actual partitions being computed, no
other code was changed in any of the applications. Figure 10
summarizes the dramatic improvements in the number of
partitioning-related lines of code for each application. These
results do not include the application-specific code that com-
putes the assignments for the independent partition, as our
framework allows that code to be used as is.

The next benefit that can be seen is in the performance
improvements in the partitioning computation when run on
a single compute node. Figure 11 shows these benefits for
each of the applications. These three applications perform
partitioning during initialization and then simulate for any-
thing from seconds to hours, depending on the user’s needs.
To eliminate that variability, we report partitioning speedups
considering only the time required for computing the parti-
tioning and the subsequent verification in the original Re-
gent code. Overall application speedup will vary between
this upper bound and negligible, depending on the length of
the simulation. (None of these perform any re-partitioning
(e.g. for load balancing) during the computation, due in part
to the cost of such repartitioning with existing programming
models. It is our hope that the performance and productivity
improvements of dependent partitioning make this a much
more attractive option in the future.)

Circuit
::::
Each

:::::::::
application

:
was run with two input sizes,

while PENNANT and MiniAero used three
::::
three

::::
input

:::::
sizes,

each roughly 10x larger than the next. For each case, the blue
bar on the left shows the time taken by the old partitioning

11

Prof. Aiken CS 315B Lecture 7 25

Summary

• The built-in partitioning operations are
• Expressive
• Can execute in parallel
• Can be analyzed by the Regent implementation

• Except for explicit coloring objects
• Inherently not parallel

Prof. Aiken CS 315B Lecture 7 26

