Final Project: A Parallel Multigrid Poisson Solver

Thomas D. Economon, Juan J. Alonso
CME 342, Spring 2013-2014
Stanford University

1 Project Overview

The overall goals of this project are to parallelize an existing serial code (C/C++) for a multigrid poisson
equation solver using MPI and to study the performance and scalability of the resulting implementation.
This will require the parallelization of two key components in the solver:

1. classical iterative methods

2. geometric multigrid

The classical iterative methods considered are the Jacobi, Gauss-Seidel, and Successive Over-Relaxation
(SOR) methods. The parallelization of the geometric multigrid will require the partitioning of nested coarse
mesh levels with the appropriate halo layers and communication schedules. With each stage of the imple-
mentation, the performance and scalability of the solver will be assessed.

2 Problem Description

We are interested in solving the Poisson equation, which can be expressed

in a domain C R"™ with a boundary 99 (see Fig.[1]) as of)
—aV=f inQ)
p=g on 0f2

where a is a known constant, V2 = V - V(+) is the Laplacian operator,
¢ = ¢(&) is our scalar variable that is a function of space, and f = f(&) is
a forcing function. The second line of represents a Dirichlet condition
on the boundary 92, where g = g(Z') is a prescribed function along the

boundary. Figure 1: Schematic of the

mathematical domain.
2.1 Discretization

Let Q) represent a 2D square domain given by [0, 1] x [0,1]. We choose to discretize using a 2nd-order
finite difference approximation on a cartesian mesh composed of a number N nodes in the x- and y-directions
with uniform spacing h, as seen in Fig. 2] The value of ¢ on the 2D cartesian mesh can then be approximated
for each node {i,j} in the interior of the computational domain as

a ..
73 (ij—1+ bi—1j —40ij+ div1; + bijy1) = fij, 4J=2,...,N—1, (2)

where the subscripts 7 and j represent the indices of the current node in the computational domain for the
x- and y-directions, respectively. Assuming a Dirichlet boundary condition specifies the values for ¢ on the
boundary of the domain, such as that given in , we can consider the values for ¢y ;, ¢n,j, ¢i,1, and ¢; N
known. As written in Eqn. [2} the result is a system of (N — 2) x (N — 2) linear equations for the unknown
values of ¢; ; in the interior of the domain.

2.2 Forming the Linear System

We have freedom in deciding how to organize and ultimately solve the system of linear equations given by
(2). Given a natural ordering of the unknowns and the 5-point stencil in Eqn. [2) we can express the full
linear system:

Ad =T, (3)

where the matrix A is banded as a result of the structured mesh discretization and is given by

4 -1 I -1
-1 4 -1 : -1
}h |
—— L A (4)
(.41} h h2 | -1 [4 —1 ’
* -1 -1 4 -1
{1, 71 {i. 7} i+, 5} |
L 2 [J L 4 |
{i, j—1} I
¢ with ® and f being the vectors of unknowns and source
terms in a natural ordering, respectively. Note that the
discretization of the Poisson equation on a general un-
structured mesh would result in a sparse matrix for A

when the system in Eqn. [is formed. However, for this
Figure 2: 2D uniform mesh featuring a discretiza- project, we are taking advantage of the structure of the
tion with a 5-point stencil. matrix and will not explicitly form the matrix A in our
calculations.

2.3 Classical Iterative Methods

At this point, a number of methods can be employed for solving the linear system in Eqn. [3] but we will
focus on the classical iterative methods in this project. The Gauss-Seidel will serve as an example in the
discussion below. Starting with a linear system

Ax =Db, (5)
where
a1 ap2 - - a1,N T1 b1
a1 G232 To bo
A= :) , X= . , b= . , (6)
an,1 anN,N TN by

we can formulate the classical iterative methods by first splitting the matrix A into lower triangular, diagonal,
and upper triangular parts and then rearranging terms to form point updates for the unknowns. For example,
we can write the update for an unknown using the Gauss-Seidel method as follows:

1 i—1 N

n+l _ n+1 n

T = bi— Y aigaitt = Y agai |, (7)
Bl j=1 k=i+1

where n represents the iteration index, ¢ is the row index, and j is the column index. Therefore, as we sweep
through the unknowns, the entries below the diagonal in A are multiplied by x values that have already been

updated. The point updates for the Jacobi and SOR methods are similar in nature and can be found in the
lecture notes. The system is typically solved using a number of sweeps until a residual tolerance is reached.

Applying Eqn. [7] to our linear system for solving the discrete Poisson equation in Eqn. 3] with matrix A
given by Eqn. |4l we find that the Gauss-Seidel update for ¢ at a node {i,j} is

n 1 n n 71 h2
¢J1:4(@fﬂ+@ﬁz+¢ﬁu+¢&mﬁ'aﬁo- (8)

2.4 Geometric Multigrid

For typical iterative numerical solution methods, high-frequency (local) errors in the solution are well-
damped, while lower frequency (global) errors are poorly damped. Therefore, the low-frequency errors are
difficult to eliminate, which leads to slower solver convergence, especially on fine meshes. The key idea behind
multigrid is that effective rates of convergence at all scales can be maintained in a solver by leveraging a
sequence of grids at various resolutions. With geometric multigrid, multiple levels of physical grids with
varying resolution are used to provide better approximations of the solution with each step of an iterative
solution method (i.e., a multigrid cycle).

To illustrate the basic components of linear multigrid for elliptic problems, define the error in the
solution to be the difference between the solution ® and the approximation to the solution ®, or

e=0— 9, (9)

where e is the error vector (one value per node in the computational mesh). We can also define a residual
vector r, which is a measure of how well the discretized governing equations are being satisfied by our
numerical solution procedure, as

r=f—Ad. (10)
Introducing Eqn. [J] into our original system in Eqn. [3] gives
A(B+e) =1, (11)
and by introducing Eqn. we recover the following expression:
Ae=r, (12)

which relates the error in the solution to the residual. Eqn. allows us to compute a measure of the error
on coarser mesh levels after transferring the values of the residual from the fine mesh level onto the coarse
level (restriction). After calculating e on a coarse level, we can form a correction to the solution on the fine
mesh as

D=0 +e, (13)

upon transferring the error up to a fine mesh from the coarse mesh level below (prolongation). Furthermore,
we can apply these ideas recursively over an entire set of grids of various resolutions to complete a full
multigrid cycle, such as the V-cycle detailed in Alg.

During a multigrid V-cycle, the solution is first approximated using several smoothing iterations with a
method like Gauss-Seidel on the finest mesh (pre-smoothing), and then the residual is transferred to the first
coarse level, where additional smoothing iterations occur. This restriction followed by smoothing continues
recursively until the coarsest mesh level is reached (the downstroke of the cycle). After performing some
smoothing iterations on the coarsest level, a correction for the solution values is transferred to the finer mesh
level above. This upward stroke of the cycle with prolongation and smoothing continues until a correction
is finally applied to the solution on the finest mesh. Typically, several final smoothing iterations (post-
smoothing) are performed on the finest mesh before moving on to the next multigrid cycle. The downstroke
and upstroke of the cycle form a V-shape when viewed graphically, as in Fig.[3] Other cycles are possible,
and W-cycles are common, for instance.

Algorithm 1 Multigrid V-Cycle

1: procedure MULTIGRID_CYCLE(®, f,) > [is the current mesh level
2 ! + cAUSS_SEIDEL(®!, f!) > Pre-smoothing of the solution
3 if | < n_levels then

4: ot 0

5: £+l « rREsTRICT(®!, f!)

6 MULTIGRID_CYCLE(®, f, 1 + 1) > Recursive call
7 ®! + PROLONGATE(®!F!, fi+1)

8 ®! + GAUSS_SEIDEL(®!, f!) > Post-smoothing of the solution

2.4.1 Mesh Coarsening

As we have chosen a simple, cartesian discretization of the domain 2, the fine mesh can be coarsened
repeatedly in a straightforward manner by removing every other node in the 7 and j dimensions. In 1D, this
results in a reduction in the degrees of freedom by a factor of 2 on each coarser level. In 2D, the reduction is
by a factor of 4 with each coarser level, and in 3D, the reduction factor is 8. Therefore, with every coarsening,
the number of degrees of freedom reduces by a factor of 2¢, where d is the physical dimension of the problem.
In our 2D example problem with a vertex-based scheme, the mesh will be automatically coarsened until 3
nodes remain in both the i and j dimensions (or until the mesh dimension is no longer evenly divisible),
which will allow for our 5-point stencil to be computed for a single central node. An example of the nested
mesh levels can be seen in Fig.

SMOOTH ® SMOOTH
RESTRICT PROLONGATE
SMOOTH ® sMoOoTH
RESTRICT PROLONGATE
SMOOTH @ sMOOTH
RESTRICT PROLONGATE
SMOOTH © SMOOTH
RESTRICT PROLONGATE
SMOOTH SMOOTH

Figure 3: Representation of the nested mesh levels and corresponding multigrid V-cycle.

2.4.2 Restriction Operator

For our discretized Poisson problem, we can express the value of the residual r from Eqn. [10|at each node as

h2
rig = figtbigo1+ Gic1 —4dij + bivr + it (14)

which can be seen as a rearrangement of Eqn. [§]

After computing r, we restrict the values down to the next coarse level to form the right-hand side of
Eqn. For a weighted restriction, we will include information from all of the fine nodes that surround a
particular coarse mesh node. To accomplish this, we will set the residual at a coarse mesh node to be the
sum of a contribution from the coincident node (1/4 of the value), the nodes that are part of the stencil in

the north, south, east, and west directions (1/8 of the value), and the diagonal neighbors, i.e., north-east,
north-west, south-east, and south-west (1/16 of the value).

2.4.3 Prolongation Operator

A prolongation operation is one that transfers the correction from a coarse mesh to a fine mesh. Similar to
the weighted method for restriction, we will perform a weighted prolongation by setting the correction at a
fine mesh node to be the value of the correction at a coincident coarse node, if applicable, or as the sum of
a contribution from the coarse nodes that are nearest in the north, south, east, and west directions (1/2 of

the value) and the nearest diagonal neighbors, i.e., north-east, north-west, south-east, and south-west (1/4
of the value).

2.5 Test Problem

A simple 2D test problem with a known solution has been chosen for exploring the performance and scalability

of the multigrid Poisson solver. For the Poisson system in (I]) on our square domain Q given by [0, 1] x [0, 1],
we select @ = 1 and a forcing term of

f=—5.0exp(z) exp(—2.0y). (15)
The resulting boundary value problem has a solution in the domain 2 given by
¢ = exp(x) exp(—2.0y), (16)

which is imposing as a Dirichlet condition on the boundaries 0{2. The exact solution for ¢ is presented in

Fig. [

Bl T 'n 257x257 Grid, SOR Smoother, V-Cycle
¢: 0.2 068 1.16 1.64 2.12 2.6 6l -= NoMG |
== 1 Level
ath. == 3Levels|]
AR — 5levels
Ss I — 7 Levels
. 2th S T Em.ea LT
s || oo T
~
3 Off, te
R T
o ! RS
— 2f| .
[o)] i RS
kel ' ..
1 .
1 ~ N
1 ~
—6H| Se R
1 ~ N
1 ~ N
-8t
0 1000 2000 3000 4000 5000
Iteration

Figure 4: The known solution for ¢ for the chosen test problem (left) and examples of multigrid performance
(right).

In the provided serial code, the values of the solution ¢ are initialized to the known solution on the
boundaries of the domain 0f2, while the value of the solution is taken as zero for all interior nodes. The
iterative solution process continues until a specified level of convergence is obtained. An £2-norm of the
residual r is taken as a convenient measure, and the solver iterates until the initial residual value is reduced

by a prescribed number of orders of magnitude. Examples of the solver convergence for different numbers of
multigrid levels can be seen in Fig. [4

3 Project Deliverables

The deliverables for the final project are divided into three main categories: analyzing the performance of
the serial solver, parallelization and assessment of the iterative linear solvers, and the parallelization and
assessment of the geometric multigrid. Assume a convergence criteria of 14 orders reduction in the magnitude
of the residual £2-norm with the given test problem for all studies below, unless specifically stated otherwise.
Submit your code and a writeup that addresses all of the questions posed below.

3.1 Serial Performance

For a small problem (N = 33), answer the following questions for each of the serial iterative solvers (Jacobi,
Gauss-Seidel, and SOR):

1. How many iterations are required to converge the test problem without multigrid? What is the serial
execution time?

2. How many iterations are required to converge the test problem with multigrid? What is the serial
execution time?

As the size of the problem increases (N = 65, 129, 257, etc.), what happens to the convergence behavior
for the different iterative solvers both with and without multigrid?

3.2 Parallel Iterative Methods

For this portion of the project, disable the multigrid feature in the solver and assume that the grid is always
partitioned among p processors in both the z- and y-directions, resulting in a total of p % p processors in a
given calculation. Complete the following:

1. Implement the Jacobi method in parallel with MPI. Verify the correctness of your implementation by
matching the residual values reported in the serial version, and provide this information.

2. Implement parallel Gauss-Seidel and SOR methods using a red-black ordering of the unknowns with
MPI. Verify the correctness of your implementation by matching the residual values reported in the
serial version, and provide this information.

3. For N = 257 and a convergence criteria of 4 orders reduction in the magnitude of the residual £2-norm,
compare and discuss the overall performance (in terms of iterations to convergence and wall-clock time)
and scalability of the parallelized Jacobi, Gauss-Seidel, and SOR methods.

3.3 Parallel Multigrid

For simplicity, assume again that the domain will be partitioned among p processors in both the z- and
y-directions and also that the number of nodes in the mesh will remain evenly divisible for multigrid (i.e.,
N = 2™ + 1 with a choice of m). Choose one of the three iterative smoothers and complete the following:

1. Construct the necessary halo layers and communication schedules for all coarse levels and reactivate
multigrid. Verify the correctness of your implementation by matching the residual values reported in
the serial version, and provide this information.

2. For N = 1025, assess and discuss the performance and scalability of the parallel multigrid Poisson
solver as compared to the serial version for your chosen smoother.

3. (10 % extra credit) Assess the impact of reducing the number of communications on the coarser
mesh levels on the overall performance of the parallel multigrid solver. Report your findings.

	Project Overview
	Problem Description
	Discretization
	Forming the Linear System
	Classical Iterative Methods
	Geometric Multigrid
	Mesh Coarsening
	Restriction Operator
	Prolongation Operator

	Test Problem

	Project Deliverables
	Serial Performance
	Parallel Iterative Methods
	Parallel Multigrid

